【題目】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會(huì)影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為
(1)求及基地的預(yù)期收益;
(2)若該基地額外聘請(qǐng)工人,可在周一當(dāng)天完成全部采摘任務(wù),若周一無雨時(shí)收益為萬元,有雨時(shí)收益為萬元,且額外聘請(qǐng)工人的成本為元,問該基地是否應(yīng)該額外聘請(qǐng)工人,請(qǐng)說明理由.
【答案】(1) 基地的預(yù)期收益為9.16萬元;(2)見解析.
【解析】試題分析:
(1)由于兩天下雨是相互獨(dú)立的,因此兩天都下雨的概率是,由此可得;該基地收益的可能取值為10,8, 5(單位:萬元),分別計(jì)算要概率,然后列出概率分布列,計(jì)算出數(shù)學(xué)期望.(2)該基地額外聘請(qǐng)工人的預(yù)期收益絕對(duì)值計(jì)算易得,現(xiàn)第(1)小題,比較兩個(gè)預(yù)期值可得.
試題解析:
(1) 兩天都下雨的概率為,解得.
該基地收益的可能取值為10,8, 5。(單位:萬元)則:
, ,
所以該基地收益的分布列為:
10 | 8 | 5 | |
0.64 | 0.32 | 0.04 |
則該基地的預(yù)期收益(萬元)
所以,基地的預(yù)期收益為9.16萬元
⑵設(shè)基地額外聘請(qǐng)工人時(shí)的收益為萬元,則其預(yù)期收益:
(萬元)
此時(shí),所以該基地應(yīng)該外聘工人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), , .
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)有兩個(gè)零點(diǎn),試求的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠DAB=60°.側(cè)面PAD為正三角形,且平面PAD⊥平面ABCD,則下列說法錯(cuò)誤的是( 。
A.在棱AD上存在點(diǎn)M,使AD⊥平面PMB
B.異面直線AD與PB所成的角為90°
C.二面角P﹣BC﹣A的大小為45°
D.BD⊥平面PAC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是將一正方體貨物沿坡面AB裝進(jìn)汽車貨廂的平面示意圖.已知長方體貨廂的高度BC為 米,tanA= ,現(xiàn)把圖中的貨物繼續(xù)往前平移,當(dāng)貨物頂點(diǎn)D與C重合時(shí),仍可把貨物放平裝進(jìn)貨廂,求BD的長.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一枚質(zhì)地均勻且四個(gè)面上分別標(biāo)有1,2,3,4的正四面體先后拋擲兩次,其底面落于桌面上,記第一次朝下面的數(shù)字為,第二次朝下面的數(shù)字為.用表示一個(gè)基本事件.
請(qǐng)寫出所有基本事件;
求滿足條件“”為整數(shù)的事件的概率;
求滿足條件“”的事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯(cuò)誤的是 ( )
A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面
B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與圓交于M、N兩點(diǎn),且M、N關(guān)于直線對(duì)稱.
(1)求m,k的值;
(2)若直線與圓C交P,Q兩點(diǎn),是否存在實(shí)數(shù)a使得OP⊥OQ,如果存在,求出a的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍x>0,下表是y與x的幾組對(duì)應(yīng)值:
x | … | 1 | 2 | 3 | 5 | 7 | 9 | … |
y | … | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | … |
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小騰的探究過程,請(qǐng)補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表格中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①x=4對(duì)應(yīng)的函數(shù)值y約為
②該函數(shù)的一條性質(zhì):
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com