A. | ±$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | ±$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
分析 由拋物線C:y2=4x,可得焦點F(1,0).設直線l:y=k(x-1),A(x1,y1),B(x2,y2).與拋物線方程聯(lián)立化為:k2x2-(4+2k2)x+k2=0,利用根與系數(shù)的關系可得|AB|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$.點P到直線l的距離d=$\frac{3|k|}{\sqrt{1+{k}^{2}}}$.利用$\frac{1}{2}d$|AB|=$6\sqrt{3}$.即可得出.
解答 解:由拋物線C:y2=4x,可得焦點F(1,0).
設直線l:y=k(x-1),A(x1,y1),B(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,化為:k2x2-(4+2k2)x+k2=0,
可得:x1+x2=$\frac{4+2{k}^{2}}{{k}^{2}}$,x1x2=1.
∴|AB|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\frac{4(1+{k}^{2})}{{k}^{2}}$.
點P到直線l的距離d=$\frac{|-k-k-k|}{\sqrt{1+{k}^{2}}}$=$\frac{3|k|}{\sqrt{1+{k}^{2}}}$.
∴$\frac{1}{2}d$|AB|=$\frac{1}{2}$×$\frac{3|k|}{\sqrt{1+{k}^{2}}}$×$\frac{4(1+{k}^{2})}{{k}^{2}}$=$6\sqrt{3}$.
化為:k2=$\frac{1}{2}$,
解得k=$±\frac{\sqrt{2}}{2}$.
故選:$±\frac{\sqrt{2}}{2}$.
點評 本題考查了拋物線的標準方程及其性質(zhì)、直線與拋物線相交弦長問題、一元二次方程的根與系數(shù)的關系、點到直線的距離公式、三角形面積計算公式,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | a<b<c | C. | a<c<b | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5個 | B. | 4個 | C. | 3個 | D. | 2個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com