分析 (1)根據(jù)函數(shù)奇偶性的定義和性質(zhì)建立方程進行求解即可求a,b的值;
(2)根據(jù)函數(shù)單調(diào)性的定義進行證明即可.
解答 解:(1)∵f(x)是定義域為R的奇函數(shù),
∴f(0)=0,
即f(0)=$\frac{b-1}{2+a}$=0,則b=1,
此時f(x)=$\frac{1-{2}^{x}}{{2}^{x+1}+a}$,
且f(-x)=-f(x),
則$\frac{1-{2}^{-x}}{{2}^{-x+1}+a}$=-$\frac{1-{2}^{x}}{{2}^{x+1}+a}$,
即$\frac{{2}^{x}-1}{{2}^{x}•{2}^{-x+1}+a•{2}^{x}}$=$\frac{{2}^{x}-1}{2+a•{2}^{x}}$=$\frac{{2}^{x}-1}{{2}^{x+1}+a}$,
則2+a•2x=2•2x+a,
則a=2;
(2)當a=2,b=1時,f(x)=$\frac{1-{2}^{x}}{{2}^{x+1}+2}$=$\frac{1}{2}$($\frac{1-{2}^{x}}{1+{2}^{x}}$)=$\frac{1}{2}$•$\frac{2-(1+{2}^{x})}{1+{2}^{x}}$=$\frac{1}{1+{2}^{x}}$-$\frac{1}{2}$
f(x)在R上是單調(diào)減函數(shù),用定義證明如下;
任取x1、x2,且x1<x2,
則f(x1)-f(x2)=$\frac{1}{1+{2}^{{x}_{1}}}$$-\frac{1}{2}$-$\frac{1}{1+{2}^{{x}_{2}}}$+$\frac{1}{2}$=$\frac{1}{1+{2}^{{x}_{1}}}$-$\frac{1}{1+{2}^{{x}_{2}}}$=$\frac{1+{2}^{{x}_{2}}-1-{2}^{{x}_{1}}}{(1+{2}^{{x}_{1}})(1+{2}^{{x}_{2}})}$=$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{(1+{2}^{{x}_{1}})(1+{2}^{{x}_{2}})}$;
∵x1<x2,∴${2}^{{x}_{2}}$-${2}^{{x}_{1}}$>0,1+${2}^{{x}_{1}}$>0,1+${2}^{{x}_{2}}$>0;
∴f(x1)-f(x2)>0,
即f(x1)>f(x2),
∴f(x)是R上的單調(diào)減函數(shù).
點評 本題考查了函數(shù)的奇偶性與單調(diào)性的判斷與應用問題,利用函數(shù)奇偶性和單調(diào)性的定義是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$\frac{2}{x}$ | B. | y=3-sinx | C. | y=-tanx | D. | y=-2x3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {a|a≥2} | B. | {a|a>2} | C. | {a|a≥1} | D. | {a|a≤2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | 0 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲 | 12 | 13 | 14 | 15 | 10 | 16 | 13 | 11 | 15 | 11 |
乙 | 11 | 16 | 17 | 14 | 13 | 19 | 6 | 8 | 10 | 16 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com