【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)絡(luò)外賣也開(kāi)始成為不少人日常生活中重要的一部分,其中大學(xué)生更是頻頻使用網(wǎng)絡(luò)外賣服務(wù).市教育主管部門(mén)為掌握網(wǎng)絡(luò)外賣在該市各大學(xué)的發(fā)展情況,在某月從該市大學(xué)生中隨機(jī)調(diào)查了人,并將這人在本月的網(wǎng)絡(luò)外賣的消費(fèi)金額制成如下頻數(shù)分布表(已知每人每月網(wǎng)絡(luò)外賣消費(fèi)金額不超過(guò)元):

消費(fèi)金額(單位:百元)

頻數(shù)

由頻數(shù)分布表可以認(rèn)為,該市大學(xué)生網(wǎng)絡(luò)外賣消費(fèi)金額(單位:元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值,.現(xiàn)從該市任取名大學(xué)生,記其中網(wǎng)絡(luò)外賣消費(fèi)金額恰在元至元之間的人數(shù)為,求的數(shù)學(xué)期望;

市某大學(xué)后勤部為鼓勵(lì)大學(xué)生在食堂消費(fèi),特地給參與本次問(wèn)卷調(diào)查的大學(xué)生每人發(fā)放價(jià)值元的飯卡,并推出一檔勇闖關(guān),送大獎(jiǎng)的活動(dòng).規(guī)則是:在某張方格圖上標(biāo)有第格、第格、第格、、第格共個(gè)方格.棋子開(kāi)始在第格,然后擲一枚均勻的硬幣(已知硬幣出現(xiàn)正、反面的概率都是,其中),若擲出正面,將棋子向前移動(dòng)一格(從),若擲出反面,則將棋子向前移動(dòng)兩格(從.重復(fù)多次,若這枚棋子最終停在第格,則認(rèn)為闖關(guān)成功,并贈(zèng)送元充值飯卡;若這枚棋子最終停在第格,則認(rèn)為闖關(guān)失敗,不再獲得其他獎(jiǎng)勵(lì),活動(dòng)結(jié)束.

①設(shè)棋子移到第格的概率為,求證:當(dāng)時(shí),是等比數(shù)列;

②若某大學(xué)生參與這檔闖關(guān)游戲,試比較該大學(xué)生闖關(guān)成功與闖關(guān)失敗的概率大小,并說(shuō)明理由.

參考數(shù)據(jù):若隨機(jī)變量服從正態(tài)分布,則,.

【答案】;①證明見(jiàn)解析;②闖關(guān)成功的概率大于闖關(guān)失敗的概率,理由見(jiàn)解析.

【解析】

根據(jù)數(shù)據(jù)算出,由服從正態(tài)分布,算出概率,即,進(jìn)而算出的數(shù)學(xué)期望;

①棋子開(kāi)始在第格為必然事件,.第一次擲硬幣出現(xiàn)正面,棋子移到第格,其概率為,即.棋子移到第格的情況是下列兩種,即棋子先到第格,又?jǐn)S出反面,其概率為;棋子先到第格,又?jǐn)S出正面,其概率為.所以.,進(jìn)而求證當(dāng)時(shí),是等比數(shù)列;②由①知,,得,所以,算出相應(yīng)概率判斷出闖關(guān)成功的概率大于闖關(guān)失敗的概率.

解:

因?yàn)?/span>服從正態(tài)分布,所以.

所以

所以的數(shù)學(xué)期望為.

①棋子開(kāi)始在第格為必然事件,.

第一次擲硬幣出現(xiàn)正面,棋子移到第格,其概率為,即.

棋子移到第格的情況是下列兩種,而且也只有兩種:

棋子先到第格,又?jǐn)S出反面,其概率為;

棋子先到第格,又?jǐn)S出正面,其概率為

所以

,且,

所以當(dāng)時(shí),數(shù)列是首項(xiàng),公比為的等比數(shù)列.

②由①知,

以上各式相加,得

所以.

所以闖關(guān)成功的概率為,

闖關(guān)失敗的概率為.

,

所以該大學(xué)生闖關(guān)成功的概率大于闖關(guān)失敗的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為了幫助農(nóng)戶脫貧致富,鼓勵(lì)農(nóng)戶利用荒地山坡種植果樹(shù),某農(nóng)戶考察了三種不同的果樹(shù)苗、、.經(jīng)過(guò)引種實(shí)驗(yàn)發(fā)現(xiàn),引種樹(shù)苗的自然成活率為,引種樹(shù)苗、的自然成活率均為

1)任取樹(shù)苗、、各一棵,估計(jì)自然成活的棵數(shù)為,求的分布列及其數(shù)學(xué)期望;

2)將(1)中的數(shù)學(xué)期望取得最大值時(shí)的值作為種樹(shù)苗自然成活的概率.該農(nóng)戶決定引種種樹(shù)苗,引種后沒(méi)有自然成活的樹(shù)苗有的樹(shù)苗可經(jīng)過(guò)人工栽培技術(shù)處理,處理后成活的概率為,其余的樹(shù)苗不能成活.

①求一棵種樹(shù)苗最終成活的概率;

②若每棵樹(shù)苗引種最終成活可獲利元,不成活的每棵虧損元,該農(nóng)戶為了獲利期望不低于萬(wàn)元,問(wèn)至少要引種種樹(shù)苗多少棵?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)的十佳校園歌手有6名男同學(xué),4名女同學(xué),其中3名來(lái)自1班,其余7名來(lái)自其他互不相同的7個(gè)班,現(xiàn)從10名同學(xué)中隨機(jī)選擇3名參加文藝晚會(huì),則選出的3名同學(xué)來(lái)自不同班級(jí)的概率為_____,設(shè)X為選出3名同學(xué)中女同學(xué)的人數(shù),則該變量X的數(shù)學(xué)期望為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上橫坐標(biāo)為的點(diǎn)到焦點(diǎn)的距離為.

1)求拋物線的方程;

2若過(guò)點(diǎn)的直線與拋物線交于不同的兩點(diǎn),且以為直徑的圓過(guò)坐標(biāo)原點(diǎn),求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面是直角梯形,,,且,的中點(diǎn).

求證:

求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,平面平面,是邊長(zhǎng)為2的等邊三角形,,,,點(diǎn)的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

(Ⅲ)在線段上是否存在一點(diǎn),使直線與平面所成的角正弦值為,若存在求出的長(zhǎng),若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在三棱錐,,,,

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖沖之是中國(guó)南北朝時(shí)期的數(shù)學(xué)家和天文學(xué)家,他在數(shù)學(xué)方面的突出貢獻(xiàn)是將圓周率的精確度計(jì)算到小數(shù)點(diǎn)后第位,也就是之間,這一成就比歐洲早了多年,我校愛(ài)數(shù)學(xué)社團(tuán)的同學(xué),在祖沖之研究圓周率的方法啟發(fā)下,自制了一套計(jì)算圓周率的數(shù)學(xué)實(shí)驗(yàn)?zāi)P?/span>.該模型三視圖如圖所示,模型內(nèi)置一個(gè)與其各個(gè)面都相切的球,該模型及其內(nèi)球在同一方向有開(kāi)口裝置.實(shí)驗(yàn)的時(shí)候,同學(xué)們隨機(jī)往模型中投擲大小相等,形狀相同的玻璃球,通過(guò)計(jì)算落在球內(nèi)的玻璃球數(shù)量,來(lái)估算圓周率的近似值.已知某次實(shí)驗(yàn)中,某同學(xué)一次投擲了個(gè)玻璃球,請(qǐng)你根據(jù)祖沖之的圓周率精確度(取小數(shù)點(diǎn)后三位)估算落在球內(nèi)的玻璃球數(shù)量(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若曲線、交于、兩點(diǎn),是曲線上的動(dòng)點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案