【題目】設(shè)拋物線的焦點(diǎn)為,過(guò)點(diǎn)作垂直于軸的直線與拋物線交于,兩點(diǎn),且以線段為直徑的圓過(guò)點(diǎn).
(1)求拋物線的方程;
(2)若直線與拋物線交于,兩點(diǎn),點(diǎn)為曲線:上的動(dòng)點(diǎn),求面積的最小值.
【答案】(1) ;(2) .
【解析】
(1)由于與軸垂直,因此就是圓心,的長(zhǎng)是拋物線的通徑長(zhǎng),從而易求得;
(2)點(diǎn),,把直線方程與拋物線方程聯(lián)立,消去得的一元二次方程,由韋達(dá)定理得,從而可得,設(shè)動(dòng)點(diǎn),求出到直線的距離,利用基本不等式可求得它的最小值,從而得三角形面積的最小值.
(1)由題意得,圓的半徑,解得:
故拋物線的方程為.
(2)設(shè)點(diǎn),,由直線過(guò)拋物線的焦點(diǎn),
聯(lián)立得,
故,所以
由點(diǎn)為曲線上的動(dòng)點(diǎn),設(shè)點(diǎn),點(diǎn)到直線的距離
,
由,故
當(dāng)且僅當(dāng),即時(shí),取等號(hào),所以,
∴,
故面積的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
⑴求的解析式;
⑵求時(shí),的值域;
⑶設(shè),若對(duì)任意的,總有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)到拋物線焦點(diǎn)的距離為.
(1)求的值;
(2) 設(shè)是拋物線上異于的兩個(gè)不同點(diǎn),過(guò)作軸的垂線,與直線交于點(diǎn),過(guò)作軸的垂線,與直線交于點(diǎn),過(guò)作軸的垂線,與直線分別交于點(diǎn).
求證:①直線的斜率為定值;
②是線段的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體ABCD﹣A′B′C′D′中,AB=2 ,AD=2 ,AA′=2,
(Ⅰ)求異面直線BC′ 和AD所成的角;
(Ⅱ)求證:直線BC′∥平面ADD′A′.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為菱形,,,點(diǎn)為的中點(diǎn).
(1)證明:;
(2)若點(diǎn)為線段的中點(diǎn),平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù);
(1)若函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的取值范圍;
(2)是否存在整數(shù),,使得關(guān)于的不等式的解集恰好為,若存在,求出,的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com