5.函數(shù)f(x)=ax2+2ax+1在[-3,2]上有最大值4.那么實(shí)數(shù)a等于( 。
A.-3B.$\frac{3}{8}$C.$-3或\frac{3}{8}$D.$3或-\frac{3}{8}$

分析 分類(lèi)討論,確定函數(shù)的對(duì)稱(chēng)軸,根據(jù)函數(shù)f(x)=ax2+2ax+1在[-3,2]上有最大值4,建立方程,即可求得結(jié)論.

解答 解:①當(dāng)a>0時(shí),因?yàn)閷?duì)稱(chēng)軸為x=-1,
所以f(2)最大,
所以f(2)=4,即4a+4a+1=4,
所以a=$\frac{3}{8}$;
②當(dāng)a<0時(shí),因?yàn)閷?duì)稱(chēng)軸為x=-1,所以f(-1)最大,所以f(-1)=4,即a-2a+1=4,所以a=-3;
③當(dāng)a=0時(shí),f(x)=1恒成立,不滿(mǎn)足條件.
綜上可知,a=-3或a=$\frac{3}{8}$.
故選:C.

點(diǎn)評(píng) 本題考查二次函數(shù)的最值,考查分類(lèi)討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=Asin(2x+φ)(|φ|≤$\frac{π}{2}$,A>0)部分圖象如圖所示,且f(a)=f(b)=0,對(duì)不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=$\sqrt{3}$,則(  )
A.f(x)在(-$\frac{5π}{12}$,$\frac{π}{12}$)上是減函數(shù)B.f(x)在(-$\frac{5π}{12}$,$\frac{π}{12}$)上是增函數(shù)
C.f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是減函數(shù)D.f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在如圖所示的矩形ABCD中,AB=2,AD=1,E為線段BC上的點(diǎn),則$\overrightarrow{AE}•\overrightarrow{DE}$的最小值為$\frac{15}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在A,B兩個(gè)袋中都有6張分別寫(xiě)有數(shù)字0,1,2,3,4,5的卡片,現(xiàn)從每個(gè)袋中任取一張卡片,兩張卡片上的數(shù)字之和為X,則P(X=7)=$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知四棱錐S-ABCD是底面邊長(zhǎng)為$2\sqrt{3}$的菱形,且$∠BAD=\frac{π}{3}$,若$∠ASC=\frac{π}{2}$,SB=SD
(1)求該四棱錐體積的取值范圍; 
(2)當(dāng)點(diǎn)S在底面ABCD上的射影為三角形ABD的重心G時(shí),求直線SA與平面SCD夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若P(A)=0.5,P(B)=0.3,P(AB)=0.2,則P(A|B)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.?dāng)S一對(duì)不同顏色的均勻的骰子,計(jì)算:
(1)所得的點(diǎn)數(shù)中一個(gè)恰是另一個(gè)的3倍的概率;
(2)兩粒骰子向上的點(diǎn)數(shù)不相同的概率;
(3)所得點(diǎn)數(shù)的和為奇數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.求下列函數(shù)的函數(shù)值的算法中需要用到條件結(jié)構(gòu)的是( 。
A.f(x)=x2-1B.f(x)=2x+1
C.f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x>1)}\\{{x}^{2}-1(x≤1)}\end{array}\right.$D.f(x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知$\overrightarrow{a}$,$\overrightarrow$為非零向量,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,則一定有(  )
A.$\overrightarrow{a}$=$\overrightarrow$B.$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$,$\overrightarrow$方向相同
C.$\overrightarrow{a}$=-$\overrightarrow$D.$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$,$\overrightarrow$方向相反

查看答案和解析>>

同步練習(xí)冊(cè)答案