A. | -3 | B. | $\frac{3}{8}$ | C. | $-3或\frac{3}{8}$ | D. | $3或-\frac{3}{8}$ |
分析 分類(lèi)討論,確定函數(shù)的對(duì)稱(chēng)軸,根據(jù)函數(shù)f(x)=ax2+2ax+1在[-3,2]上有最大值4,建立方程,即可求得結(jié)論.
解答 解:①當(dāng)a>0時(shí),因?yàn)閷?duì)稱(chēng)軸為x=-1,
所以f(2)最大,
所以f(2)=4,即4a+4a+1=4,
所以a=$\frac{3}{8}$;
②當(dāng)a<0時(shí),因?yàn)閷?duì)稱(chēng)軸為x=-1,所以f(-1)最大,所以f(-1)=4,即a-2a+1=4,所以a=-3;
③當(dāng)a=0時(shí),f(x)=1恒成立,不滿(mǎn)足條件.
綜上可知,a=-3或a=$\frac{3}{8}$.
故選:C.
點(diǎn)評(píng) 本題考查二次函數(shù)的最值,考查分類(lèi)討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)在(-$\frac{5π}{12}$,$\frac{π}{12}$)上是減函數(shù) | B. | f(x)在(-$\frac{5π}{12}$,$\frac{π}{12}$)上是增函數(shù) | ||
C. | f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是減函數(shù) | D. | f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=x2-1 | B. | f(x)=2x+1 | ||
C. | f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x>1)}\\{{x}^{2}-1(x≤1)}\end{array}\right.$ | D. | f(x)=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{a}$=$\overrightarrow$ | B. | $\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$,$\overrightarrow$方向相同 | ||
C. | $\overrightarrow{a}$=-$\overrightarrow$ | D. | $\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$,$\overrightarrow$方向相反 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com