A
分析:由導(dǎo)函數(shù)的圖象得到導(dǎo)函數(shù)的符號(hào),利用導(dǎo)函數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系得到f(x)的單調(diào)性,結(jié)合函數(shù)的單調(diào)性求出不等式的解即a,b的關(guān)系,畫(huà)出關(guān)于a,b的不等式表示的平面區(qū)域,給函數(shù)與幾何意義,結(jié)合圖象求出其取值范圍.
解答:
解:由導(dǎo)函數(shù)的圖形知,
x∈(-2,0)時(shí),f′(x)<0;
x∈(0,+∞)時(shí),f′(x)>0
∴f(x)在(-2,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
∵f(2a+b)<1
∴-2<2a+b<4
∵a>0,b>0
∴a,b滿(mǎn)足的可行域?yàn)?br />
表示點(diǎn)(a,b)與(-3,-3)連線的斜率的2倍
由圖知當(dāng)點(diǎn)為(2.,0)時(shí)斜率最小,當(dāng)點(diǎn)為(0,4)時(shí)斜率最大
所以
的取值范圍為
故選A
點(diǎn)評(píng):利用導(dǎo)函數(shù)求函數(shù)的單調(diào)性問(wèn)題,應(yīng)該先判斷出導(dǎo)函數(shù)的符號(hào),當(dāng)導(dǎo)函數(shù)大于0對(duì)應(yīng)函數(shù)單調(diào)遞增;當(dāng)導(dǎo)函數(shù)小于0,對(duì)應(yīng)函數(shù)單調(diào)遞減.