(本小題滿分12分)
已知橢圓C:(a>b>0)的右焦點為F(1,0),離心率為,P為左頂點。
(1)求橢圓C的方程;
(2)設(shè)過點F的直線交橢圓C于A,B兩點,若△PAB的面積為,求直線AB的方程。

(1)+="1." (2) 直線AB的方程為x+y-1=0或x-y-1="0."

解析試題分析:解:(1)由題意可知:c=1,= ,所以a=2.
所以b=a-c=3.
所以橢圓C的標(biāo)準(zhǔn)方程為+=1.                  
(2)根據(jù)題意可設(shè)直線AB的方程為x=my+1,A(x,y),B(x,y).
可得(3m+4)y+6my-9=0.
所以△=36m+36(3m+4)>0,y+y=,yy=-.
因為P為左頂點,所以P的坐標(biāo)是(-2,0).
所以△PAB的面積S=.
=
因為△PAB的面積為,所以=.
令t=,則=(t≥1).
解得t=(舍),t=2.
所以m=.
所以直線AB的方程為x+y-1=0或x-y-1="0."
考點:直線與橢圓的位置關(guān)系
點評:研究橢圓的方程的求解一般用待定系數(shù)法,同時可以結(jié)合韋達(dá)定理來得到弦長表示面積,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點,焦點在坐標(biāo)軸上的橢圓,它的離心率為,一個焦點和拋物線的焦點重合,過直線上一點引橢圓的兩條切線,切點分別是.
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上的點處的橢圓的切線方程是. 求證:直線恒過定點;并出求定點的坐標(biāo).
(Ⅲ)是否存在實數(shù),使得恒成立?(點為直線恒過的定點)若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,連接BC、AC。

(1)求AB和OC的長;
(2)點E從點A出發(fā),沿x軸向點B運動(點E與點A、B不重合)。過點E作直線l平行BC,交AC于點D。設(shè)AE的長為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時,求出以點E為圓心,與BC相切的圓的面積(結(jié)果保留)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心為坐標(biāo)原點,一個長軸端點為,短軸端點和焦點所組成的四邊形為正方形,若直線軸交于點,與橢圓交于不同的兩點,且。(14分)
(1)求橢圓的方程;
(2)求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為

(I)求橢圓方程;
(II)設(shè)橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知拋物線和點,若拋物線上存在不同兩點滿足
(I)求實數(shù)的取值范圍;
(II)當(dāng)時,拋物線上是否存在異于的點,使得經(jīng)過三點的圓和拋物線在點處有相同的切線,若存在,求出點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)已知橢圓的左焦點的坐標(biāo)為,是它的右焦點,點是橢圓上一點, 的周長等于
(1)求橢圓的方程;
(2)過定點作直線與橢圓交于不同的兩點,且(其中為坐標(biāo)原點),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的短軸長等于焦距,橢圓C上的點到右焦點的最短距離為
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點且斜率為的直線交于、兩點,是點關(guān)于軸的對稱點,證明:三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標(biāo)原點)

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當(dāng)時,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案