分析 由偶函數(shù)的性質(zhì)和條件求出x<0時(shí)對(duì)應(yīng)的g(x),由[x]的意義和偶函數(shù)的圖象性質(zhì),在同一個(gè)坐標(biāo)系中畫出f(f(x))和g(x)的函數(shù)圖象,根據(jù)圖象分別求出交點(diǎn)的縱坐標(biāo),代入g(x)的解析式求對(duì)應(yīng)的橫坐標(biāo),即可得到答案.
解答 解:設(shè)x<0,則-x>0,
∵偶函數(shù)g(x)=-(x-1)2+1(x≥0),
∴g(x)=g(-x)=-(-x-1)2+1
=-(x+1)2+1,
由f(x)=[x]得,f(f(x))=[x],
在同一個(gè)坐標(biāo)系中畫出f(f(x))和g(x)的函數(shù)圖象,如圖所示:
由圖可得,兩個(gè)圖象有四個(gè)交點(diǎn),交點(diǎn)的縱坐標(biāo)分為1、0、-3、-4,
當(dāng)x≥0時(shí),方程f(f(x))=g(x)的解是0和1;
當(dāng)x<0時(shí),
令g(x)=-(x+1)2+1=-3,解得x=-3,
令g(x)=-(x+1)2+1=-4,解得x=-1-$\sqrt{5}$,
綜上得,f(f(x))=g(x)的解是:
0、1、-3、-1-$\sqrt{5}$,
所有解之和是-3-$\sqrt{5}$,
故答案為:$-3-\sqrt{5}$.
點(diǎn)評(píng) 本題考查函數(shù)奇偶性的圖象與性質(zhì),取整函數(shù)的圖象,以及方程根的轉(zhuǎn)化,考查數(shù)形結(jié)合思想,轉(zhuǎn)化思想,分析問題、解決問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | 5 | C. | -3+4i | D. | 3-4i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對(duì)嘉積中學(xué)的看法 | 非常好,嘉積中學(xué)奠定了 我一生成長(zhǎng)的起點(diǎn) | 很好,我的中學(xué)很快樂很充實(shí) |
A班人數(shù)比例 | $\frac{1}{2}$ | $\frac{1}{2}$ |
B班人數(shù)比例 | $\frac{2}{3}$ | $\frac{1}{3}$ |
C班人數(shù)比例 | $\frac{3}{4}$ | $\frac{1}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com