【題目】在正三棱柱ABC﹣A1B1C1中,AB=1,BB1=2,求:
(1)異面直線B1C1與A1C所成角的大;
(2)四棱錐A1﹣B1BCC1的體積.
【答案】
(1)解:∵正三棱柱ABC﹣A1B1C1,∴B1C1∥BC,
∴∠BCA1是異面直線B1C1與A1C所成角,
在△BCA1中,BC=1, , ,
∴cos∠BCA1= = ,
∴ ,
∴異面直線B1C1與A1C所成角大小為arccos
(2)解:∵正三棱柱ABC﹣A1B1C1中,AB=1,BB1=2,
∴ =S△ABCAA1= ,
,
∴四棱錐A1﹣B1BCC1的體積V= = .
【解析】(1)由B1C1∥BC,知∠BCA1是異面直線B1C1與A1C所成角,由此能求出異面直線B1C1與A1C所成角大。2)四棱錐A1﹣B1BCC1的體積V= ,由此能求出結(jié)果.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用異面直線及其所成的角的相關(guān)知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f'(x)是函數(shù)f(x)的導(dǎo)數(shù),f'(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f'(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))為函數(shù)f(x)的拐點(diǎn).某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有拐點(diǎn),任何一個(gè)三次函數(shù)都有對稱中心,且拐點(diǎn)就是對稱中心,
設(shè)函數(shù)g(x)=x3﹣3x2+4x+2,利用上述探究結(jié)果
計(jì)算: =
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的組合體中,三棱柱ABC﹣A1B1C1的側(cè)面ABB1A1是圓柱的軸截面,C是圓柱底面圓周上不與A、B重合的一個(gè)點(diǎn).
(Ⅰ)若圓柱的軸截面是正方形,當(dāng)點(diǎn)C是弧AB的中點(diǎn)時(shí),求異面直線A1C與AB1的所成角的大小;
(Ⅱ)當(dāng)點(diǎn)C是弧AB的中點(diǎn)時(shí),求四棱錐A1﹣BCC1B1與圓柱的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|),x∈R;
(1)求實(shí)數(shù)a、b的值;
(2)若不等式 對任意x∈R恒成立,求實(shí)數(shù)k的范圍;
(3)對于定義在[p,q]上的函數(shù)m(x),設(shè)x0=p,xn=q,用任意xi(i=1,2,…,n﹣1)將[p,q]劃分成n個(gè)小區(qū)間,其中xi﹣1<xi<xi+1 , 若存在一個(gè)常數(shù)M>0,使得不等式|m(x0)﹣m(x1)|+|m(x1)﹣m(x2)|+…+|m(xn﹣1)﹣m(xn)|≤M恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試證明函數(shù)f(x)是在[1,3]上的有界變差函數(shù),并求出M的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C: 過點(diǎn)M(2,0),且右焦點(diǎn)為F(1,0),過F的直線l與橢圓C相交于A,B兩點(diǎn).設(shè)點(diǎn)P(4,3),記PA,PB的斜率分別為k1和k2 .
(1)求橢圓C的方程;
(2)如果直線l的斜率等于﹣1,求出k1k2的值;
(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·上海)設(shè)z1, z2C, ,則“z1, z2中至少有一個(gè)數(shù)是虛數(shù)”是“z1-z2是虛數(shù)”的( )
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分又非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線y=xn+1(n∈N+)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn , 則log2015x1+log2015x2+…+log2015x2014的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=(x2﹣3)ex(其中x∈R,e是自然對數(shù)的底數(shù)),當(dāng)t1>0時(shí),關(guān)于x的方程[f(x)﹣t1][f(x)﹣t2]=0恰好有5個(gè)實(shí)數(shù)根,則實(shí)數(shù)t2的取值范圍是( )
A.(﹣2e,0)
B.(﹣2e,0]
C.[﹣2e,6e﹣3]
D.(﹣2e,6e﹣3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com