【題目】已知函數(shù),的導函數(shù),則下列結(jié)論中正確的是(

A.函數(shù)的值域與的值域不相同

B.把函數(shù)的圖象向右平移個單位長度,就可以得到函數(shù)的圖象

C.函數(shù)在區(qū)間上都是增函數(shù)

D.是函數(shù)的極值點,則是函數(shù)的零點

【答案】CD

【解析】

先求導,再根據(jù)輔助角公式化簡可得fxsinx),gxsinx),結(jié)合三角形的函數(shù)的圖象和性質(zhì)即可判斷

∵函數(shù)fx)=sinxcosxsinx

gx)=f'x)=cosx+sinxsinx),

故函數(shù)函數(shù)fx)的值域與gx)的值域相同,

且把函數(shù)fx)的圖象向左平移個單位,就可以得到函數(shù)gx)的圖象,

存在x0=,使得函數(shù)fx)在x0處取得極值且是函數(shù)的零點,

函數(shù)fx)在上為增函數(shù),gx)在上也為增函數(shù),∴單調(diào)性一致,

故選:CD

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,準線方程為,直線過定點)且與拋物線交于、兩點,為坐標原點.

1)求拋物線的方程;

2是否為定值,若是,求出這個定值;若不是,請說明理由;

3)當時,設(shè),記,求的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,,,三個條件中任選一個補充在下面問題中,并加以解答.

已知的內(nèi)角A,B,C的對邊分別為a,bc,若______,求的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),,其中、.恒成立,則當取得最小值時,的值為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺中,二面角是直二面角,,,

(1)求證:平面;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過點的直線與橢圓交于兩點,延長交橢圓于點的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,四邊形是等腰梯形,,,的中點.沿折起,如圖2,點是棱上的點.

1)若的中點,證明:平面平面

2)若,試確定的位置,使二面角的余弦值等于.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線為公海與領(lǐng)海的分界線,一艘巡邏艇在原點處發(fā)現(xiàn)了北偏東 海面上處有一艘走私船,走私船正向停泊在公海上接應(yīng)的走私海輪航行,以便上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.

1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點的軌跡;

2)若與公海的最近距離20海里,要保證在領(lǐng)海內(nèi)捕獲走私船,則之間的最遠距離是多少海里?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】菱形中,平面,,,

1)證明:直線平面;

2)求二面角的正弦值;

3)線段上是否存在點使得直線與平面所成角的正弦值為?若存在,求;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案