(2013•東莞二模)已知某個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是
6
6
分析:由已知中的三視圖,我們可分析出幾何體的形狀及底面邊長高等信息,代入棱錐體積公式,可得答案.
解答:解:由已知中的三視圖可得
該幾何體是一個(gè)以俯視圖為底面,
以2為高的四棱錐
故這個(gè)幾何體的體積V=
1
3
Sh=
1
3
•3×3×2=6
故答案為:6
點(diǎn)評:本題考查的知識(shí)點(diǎn)是由三視圖求體積,其中根據(jù)已知的三視圖分析出幾何體的形狀是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)設(shè)Sn為數(shù)列{an}前n項(xiàng)和,對任意的n∈N*,都有Sn=2-an,數(shù)列{bn}滿足bn=
bn-1
1+bn-1
,b1=2a1
(1)求證:數(shù)列{an}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)求數(shù)列{
1
an+2bn
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)命題“?x∈R,x2+1≥1”的否定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,D為AC的中點(diǎn),AA1=AB=2.
(1)求證:AB1∥平面BC1D;
(2)若BC=3,求三棱錐D-BC1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)已知x>0,y>0,且
1
x
+
9
y
=1
,則2x+3y的最小值為
29+6
6
29+6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞二模)已知函數(shù)f(x)=tan(
1
3
x-
π
6
)

(1)求f(x)的最小正周期;
(2)求f(
2
)
的值;
(3)設(shè)f(3α+
2
)=-
1
2
,求
sin(π-α)+cos(α-π)
2
sin(α+
π
4
)
的值.

查看答案和解析>>

同步練習(xí)冊答案