若|x-2|+|x+2|>a對一切實數(shù)x都成立,則實數(shù)a的取值范圍是


  1. A.
    -4<a<4
  2. B.
    a>4
  3. C.
    a<4
  4. D.
    -4<a
C
分析:|x-2|+|x+2|>a對一切實數(shù)x都成立?a<|x-2|+|x+2|恒成立,只需a小于(|x-2|+|x+2|)的最小值即可,利用絕對值不等式可求得(|x-2|+|x+2|)min
解答:∵|x-2|+|x+2|>a對一切實數(shù)x都成立,即a<|x-2|+|x+2|恒成立,故只需a<(|x-2|+|x+2|)min
∵|x-2|+|x+2|≥|(x-2)-(x+2)|=4,
∴(|x-2|+|x+2|)min=4.
∴a<4.
故選C.
點評:本題考查絕對值不等式,關鍵在于對|x-2|+|x+2|>a對一切實數(shù)x都成立?a<(|x-2|+|x+2|)min的理解與應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于定義在D上的函數(shù)y=f(x),若同時滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對于D內(nèi)任意x2,當x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
(2)(理)設f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實數(shù)x的范圍;
(文)設f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中:
①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
②若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
③定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
④對于函數(shù)f(x)=
x-1
x+1
,設f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
正確的個數(shù)為( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x、y∈R+,且x≠y,則“
 x y 
,
2 x y
 x+y 
,
 x+y 
2
”的大小關系是…( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法中:
①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
②若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
③定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
④對于函數(shù)f(x)=
x-1
x+1
,設f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
正確的個數(shù)為(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若x、y∈R+,且x≠y,則“
 x y 
,
2 x y
 x+y 
,
 x+y 
2
”的大小關系是…( 。
A.
 x y 
2 x y
 x+y 
 x+y 
2
B.
2 x y
 x+y 
 x y 
 x+y 
2
C.
 x y 
 x+y 
2
2 x y
 x+y 
D.
 x+y 
2
2 x y
 x+y 
 x y 

查看答案和解析>>

同步練習冊答案