已知圓C和y軸相切,圓心在直線x-3y=0上,且被直線y=x接的弦長為2
7

(1)求圓C的方程;
(2)若圓C是過球心C的截面圓,求球的表面積.
考點:直線與圓相交的性質(zhì),球的體積和表面積
專題:直線與圓
分析:(1)根據(jù)直線和圓的位置關(guān)系,利用待定系數(shù)法即可求圓C的方程;
(2)根據(jù)圓C過球心C,得到球半徑和圓半徑之間的關(guān)系,即可求出球的表面積.
解答: 解:(1)設(shè)圓C的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,
此時圓心坐標(biāo)為(a,b),半徑為r,
把圓心坐標(biāo)代入直線x-3y=0中得:a=3b,
又圓C與y軸相切,∴r=|a|,
∵圓心C到直線y=x的距離d=
|a-b|
2
=
2
|b|
,弦長的一半為
7

∴根據(jù)勾股定理得:2b2+7=a2=9b2,解得b=±1,
若b=1,a=3,r=3,此時圓C的標(biāo)準(zhǔn)方程為(x-3)2+(y-1)2=9;
若b=-1,a=-3,r=3,此時圓C的標(biāo)準(zhǔn)方程為(x+3)2+(y+1)2=9,
綜上,圓C的標(biāo)準(zhǔn)方程為(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
(2)若圓C是過球心C的截面圓,
則球半徑即為圓C的半徑,
即球半徑r=3,
則球的表面積4π×32=36π.
點評:本題主要考查圓的方程的求解,利用待定系數(shù)法是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示曲線是冪函數(shù)y=xa在第一象限內(nèi)的圖象,其中a=±
1
2
,a=±2,則曲線C1,C2,C3,C4對應(yīng)a的值依次是(  )
A、
1
2
、2、-2、-
1
2
B、2、
1
2
、-
1
2
、-2
C、-
1
2
、-2、2、
1
2
D、2、
1
2
、-2、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,則復(fù)數(shù)z=i(-2+i)的虛部為( 。
A、-2B、-1C、-2iD、2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別是a、b、c,若∠C=
2
3
π,a、b、c依次成等差數(shù)列,且公差為2.
(1)求c;
(2)如圖,A′,B′分別在射線CA,CB上運動,設(shè)∠A′B′C=θ,試用θ表示線段B'C的長,并求其范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足log2(Sn+1)=n+1,則數(shù)列{an}的第1,3,5項的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)sin(-1071°)•sin99°+sin(-171°)•sin(-261°)-cot1089°•cot(-630°);
(2)
tan1°•tan2°…tan89°
sin21°+sin22°+…+sin289°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二分法研究函數(shù)f(x)=x3+3x-1的零點時,第一次經(jīng)計算f(0)<0,f(0.5)>0,可得其中一個零點x0
 
,第二次應(yīng)計算的f(x)的值為f(
 
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:?x∈R,使得
1
2x2+1
>λ.若“-p”為真命題,則實數(shù)λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第二象限角,則下列式子中值恒為正的是( 。
A、sin
α
2
B、cos
α
2
C、tan
α
2
D、sin
α
2
-cos
α
2

查看答案和解析>>

同步練習(xí)冊答案