下列命題正確的是( 。
A、經(jīng)過三點確定一個平面
B、經(jīng)過一條直線和一個點確定一個平面
C、兩兩相交且不共點的三條直線確定一個平面
D、四邊形確定一個平面
考點:平面的基本性質及推論
專題:綜合題,空間位置關系與距離
分析:根據(jù)公理2以及推論判斷A、B、C,再根據(jù)空間四邊形判斷D.
解答: 解:A、根據(jù)公理2知,必須是不共線的三點確定一個平面,故A不對;
B、根據(jù)一條直線和直線外的一點確定一個平面知,故B不對;
C、兩兩相交且不共點的三條直線,則三個交點不共線,故它們確定一個平面,由公理1知三條直線都在此平面內(nèi),故C正確.
D、比如空間四邊形則不是平面圖形,故D不對;
故選C.
點評:本題主要考查了確定平面的依據(jù),注意利用公理2的以及推論的作用和條件,可以利用符合題意的幾何體來判斷,考查了空間想象能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓O以原點為圓心,且與直線5x-12y+26=0相切.
(1)求圓O的方程;
(2)若直線l過點(1,2),且被圓O截得的弦長為2
3
,求直線l的方程;
(3)由圓O上任意一點M向x軸作垂線,垂足為N,P是直線MN上一點且滿足|NP|=2|PM|,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設首項為a1,公差為d的等差數(shù)列{an}的前n項和為Sn,已知a5=11,S10=120
(1)求a1和d;
(2)若數(shù)列{bn}滿足于
n
b1+2b2+22b3+…+2n-1bn
=
1
an
,求數(shù)列{bn}的通項公式及前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校高三(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,據(jù)此解答如下問題:
(1)求全班人數(shù)及分數(shù)在[80,90)之間的頻數(shù);
(2)估計該班的平均分數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(3)若要從分數(shù)在[80,100]之間的所有試卷中抽樣2份試卷來進行試卷分析,求這兩份試卷恰好一份分數(shù)在[80,90)之間,另一份分數(shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,a,b,c分別是角A,B,C的對邊,且滿足4cosC+cos2C=4cosCcos2
C
2

(Ⅰ)求∠C的大小;
(Ⅱ)若|
CA
-
1
2
CB
|=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的方程:
OA
x2+
OB
2x+
OC
=
O
(x∈R),其中點C為直線AB上一點,O是直線外一點,則下列結論正確的是( 。
A、點C在線段AB上
B、點C在線段AB的延長線上且點B為線段AC的中點
C、點C在線段AB的反向延長線上且點A為線段BC的中點
D、以上均為可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋擲一枚質地均勻的硬幣,如果連續(xù)拋擲500次,那么第499次出現(xiàn)正面朝上的概率是( 。
A、
1
499
B、
1
500
C、
499
500
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我國自從1979年實行計劃生育政策以來,“獨生子女”就作為一種特殊的群體存在于我國社會中,從理論研究的角度看,對“獨生子女”的研究橫跨和占據(jù)了多學科的領地,例如心理學、教育學、人口學和社會學.某農(nóng)村高中心里咨詢室在研究獨生子女“偏執(zhí)”性格與獨生是否有關時,從在校學生中抽樣調查50人,得到如下數(shù)據(jù):
  不偏執(zhí) 偏執(zhí)
 獨生子女 12 18
 非獨生子女 12 8
根據(jù)表中數(shù)據(jù),計算統(tǒng)計量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
≈1.9231,參考以下臨界數(shù)據(jù):
P(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83
可以得到性格偏執(zhí)與是否獨生有關的把握為
 
%.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=-
2
3
,滿足Sn+
1
Sn
+2=an(n≥2).
(1)計算S1,S2,S3,S4;
(2)由(1)猜想Sn的表達式.

查看答案和解析>>

同步練習冊答案