已知
,且
,求
的最小值.某同學做如下解答:
因為
,所以
┄①,
┄②,
①
②得
,所以
的最小值為24.
判斷該同學解答是否正確,若不正確,請在以下空格內填寫正確的最小值;若正確,請在以下空格內填寫取得最小值時
、
的值.
.
.
試題分析:本題考查基本不等式的應用,注意應用基本不等式求最大(。┲禃r的條件:“一正”,“二定”,“三相等”.表面上看,本題不等式的推理過程沒有錯誤,但仔細觀察,應該能發(fā)現(xiàn)①式等號成立的條件是
,②式等號成立的條件是
,兩式中等號成立的條件不相同,因此最后的最小值24是不能取得的,正確的方法應該是
,當且僅當
,即
時,等號成立,故最小值為25.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知直線
過點
),且與
軸
軸的正半軸分別交于
兩點,
為坐標原點,則
面積的最小值為( )
A. | B. | C.4 | D.3 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設實數(shù)x,y滿足條件:
;
;
,目標函數(shù)
的最大值為12,則
的最小值是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若
和
均為非零實數(shù),則下列不等式中恒成立的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
函數(shù)
的最小值是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
“a>b>0”是“ab<
”的 ( )
A.充分而不必要條件 | B.必要而不充分條件 |
C.充分必要條件 | D.既不充分也不必要條件 |
查看答案和解析>>