【題目】(本小題10分)選修4—4:坐標系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ。

)把C1的參數(shù)方程化為極坐標方程;

)求C1C2交點的極坐標(ρ≥0,0≤θ

【答案】1)因為,消去參數(shù),得,即

極坐標方程為;

2的普通方程為,聯(lián)立的方程,解得,所以交點的極坐標為.

【解析】

試題分析:(1) 先根據(jù)同角三角函數(shù)關系cos2tsin2t=1消參數(shù)得普通方程:(x42+(y5225 ,再根據(jù)將普通方程化為極坐標方程:2)將代入,也可利用直角坐標方程求交點,再轉化為極坐標

試題解析: (1∵C1的參數(shù)方程為

x42+(y5225cos2tsin2t)=25

C1的直角坐標方程為(x42+(y5225,

代入(x42+(y5225,

化簡得:.[Z.X.X.K]

2C2的直角坐標方程為x2y22yC1的直角坐標方程為(x42+(y5225,

∴C1C2交點的直角坐標為(1,1),(0,2.

∴C1C2交點的極坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱的中點

(1)求證:;

(2)若點為四邊形內部及其邊界上的點,且三棱錐的體積為三棱柱體積的,試在圖中畫出點的軌跡,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在[1,+∞)上的函數(shù),且f(x)= ,則函數(shù)y=2xf(x)﹣3在區(qū)間(1,2016)上的零點個數(shù)為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}的公差d≠0滿足成等比數(shù)列,若=1,Sn{}的前n項和,則的最小值為________

【答案】4

【解析】

成等比數(shù)列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分離常數(shù)法化簡后,利用基本不等式求出式子的最小值.

成等比數(shù)列,a1=1,

=

∴(1+2d)2=1+12d,d≠0,

解得d=2.

∴an=1+2(n﹣1)=2n﹣1.

Sn=n+×2=n2

==n+1+﹣2≥2﹣2=4,

當且僅當n+1=時取等號,此時n=2,且取到最小值4,

故答案為:4.

【點睛】

本題考查了等差數(shù)列的通項公式、前n項和公式,等比中項的性質,基本不等式求最值,在利用基本不等式求最值時,要特別注意拆、拼、湊等技巧,使其滿足基本不等式中”(即條件要求中字母為正數(shù))、“”(不等式的另一邊必須為定值)、“”(等號取得的條件)的條件才能應用,否則會出現(xiàn)錯誤.

型】填空
束】
17

【題目】是公比為正數(shù)的等比數(shù)列,,

(1)的通項公式;

(2)是首項為1,公差為2的等差數(shù)列,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】a≠b,解關于x的不等式a2xb2(1-x)≥[axb(1-x)]2

【答案】{x|0≤x≤1}.

【解析】

將原不等式化簡為(ab)2(x2x) ≤0,由條件得到系數(shù)(ab)2>0,直接解出不等式x2x≤0即可.

解:將原不等式化為

(a2b2)x+b2≥(ab)2x2+2(a-b)bxb2,

移項,整理后得 (ab)2(x2x) ≤0,…

ab (ab)2>0,

x2x≤0,

x(x-1) ≤0.

解此不等式,得解集 {x|0≤x≤1}.

【點睛】

本小題主要考查不等式基本知識,不等式的解法;解題時要注意公式的靈活運用.對于含參的二次不等式問題,先判斷二次項系數(shù)是否含參,接著討論參數(shù)等于0,不等于0,再看式子能否因式分解,若能夠因式分解則進行分解,再比較兩根大小,結合圖像得到不等式的解集.

型】解答
束】
19

【題目】Sn是等差數(shù)列{an}的前n項和,已知的等比中項為,且的等差中項為1,求數(shù)列{an}的通項公式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) 的極大值為1,則函數(shù)f(x)的極小值為(
A.
B.﹣1
C.
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】教育部記錄了某省20082017年十年間每年自主招生錄取的人數(shù)為方便計算,2008年編號為1,2009年編號為2,2017年編號為10,以此類推數(shù)據(jù)如下:

年份編號

1

2

3

4

5

6

7

8

9

10

人數(shù)

3

5

8

11

13

14

17

22

30

31

根據(jù)前5年的數(shù)據(jù),利用最小二乘法求出y關于x的回歸方程,并計算第8年的估計值和實際值之間的差的絕對值;

根據(jù)所得到的回歸方程預測2018年該省自主招生錄取的人數(shù).

其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設向量 , 滿足:| |=| |=1, =﹣ ,< >=60°,則| |的最大值為(
A.2
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,極點為O,點A的極坐標為(2, ),以OA為斜邊作等腰直角三角形OAB(其中O,A,B按逆時針方向分布)
(1)求點B的極坐標;
(2)求三角形外接圓的極坐標方程.

查看答案和解析>>

同步練習冊答案