4.當(dāng)x∈[-2,2)時(shí),y=($\frac{1}{3}$)x-1的值域是(  )
A.(-$\frac{8}{9}$,8]B.[-$\frac{8}{9}$,8]C.($\frac{1}{9}$,9)D.[$\frac{1}{9}$,9]

分析 根據(jù)指數(shù)函數(shù)的圖象及性質(zhì)求解即可.

解答 解:由題意:函數(shù)y=($\frac{1}{3}$)x-1,在其定義域內(nèi)是單調(diào)遞減,
當(dāng)x∈[-2,2)時(shí),$(\frac{1}{3})^{x}$∈($\frac{1}{9}$,9],
∴函數(shù)y的范圍是(-$\frac{8}{9}$,8];
故選A.

點(diǎn)評(píng) 本題考查了通過(guò)指數(shù)函數(shù)的值域的問(wèn)題來(lái)求新函數(shù)的值域.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)集合A={x|x2-5x-6<0},集合B={x|-3<x<2},則A∪B={x|-3<x<6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=2sinxcos|x|(x∈R),則下列敘述錯(cuò)誤的是(  )
A.f(x)的最大值是1B.f(x)是奇函數(shù)
C.f(x)在[0,1]上是增函數(shù)D.f(x)是以π為最小正周期的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列函數(shù)中,周期為π,且在[$\frac{π}{4},\frac{π}{2}$]上為減函數(shù)的是( 。
A.y=sin(x+$\frac{π}{2}$)B.y=cos(x+$\frac{π}{2}$)C.y=cos(2x+$\frac{π}{2}$)D.y=sin(2x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)fk(x)=2x-(k-1)2-x(k∈Z),x∈R,g(x)=$\frac{{{f_2}(x)}}{{{f_0}(x)}}$.
(1)若f2(x)=2,求x的值.
(2)判斷并證明函數(shù)y=g(x)的單調(diào)性;
(3)若函數(shù)y=f0(2x)+2mf2(x)在x∈[1,+∞)上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(Ⅰ)請(qǐng)?jiān)诖痤}卡上將如表數(shù)據(jù)補(bǔ)充完整,并直接寫(xiě)出函數(shù)f(x)的解析式;
(Ⅱ)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)圖象,求y=g(x)的圖象離原點(diǎn)O最近的對(duì)稱(chēng)中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.x為第三象限角,則$\frac{{1+cos2x+4{{sin}^2}x}}{sin2x}$的最小值是(  )
A.2B.$2\sqrt{2}$C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.盒中裝有5個(gè)零件,其中有2個(gè)次品.現(xiàn)從中隨機(jī)抽取2個(gè),則恰有1個(gè)次品的概率為( 。
A.$\frac{7}{10}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,-$\sqrt{3}$),(0,$\sqrt{3}$)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C.
(1)求曲線(xiàn)C的方程;
(2)過(guò)點(diǎn)(0,$\sqrt{3}$)作直線(xiàn)l與曲線(xiàn)C交于點(diǎn)A、B,以線(xiàn)段AB為直徑的圓能否過(guò)坐標(biāo)原點(diǎn),若能,求出直線(xiàn)l的方程,若不能請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案