【題目】若函數(shù)f(x)=|x+1|+|2x+a|的最小值為3,則實數(shù)a的值為(
A.5或8
B.﹣1或5
C.﹣1或﹣4
D.﹣4或8

【答案】D
【解析】解:﹣ <﹣1時,x<﹣ ,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1> ﹣1;
≤x≤﹣1,f(x)=﹣x﹣1+2x+a=x+a﹣1≥ ﹣1;
x>﹣1,f(x)=x+1+2x+a=3x+a+1>a﹣2,
﹣1=3或a﹣2=3,
∴a=8或a=5,
a=5時, ﹣1<a﹣2,故舍去;
≥﹣1時,x<﹣1,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>2﹣a;
﹣1≤x≤﹣ ,f(x)=x+1﹣2x﹣a=﹣x﹣a+1≥﹣ +1;
x>﹣ ,f(x)=x+1+2x+a=3x+a+1>﹣ +1,
∴2﹣a=3或﹣ +1=3,
∴a=﹣1或a=﹣4,
a=﹣1時,﹣ +1<2﹣a,故舍去;
綜上,a=﹣4或8.
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,點分別是棱,的中點,是側(cè)面內(nèi)一點,若 平面,則線段長度的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在,使成立,則稱的不動點.已知函數(shù) .

1)當(dāng)時,求函數(shù)的不動點;

2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;

3)在(2)的條件下,若的兩個不動點為,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是(

A.34
B.55
C.78
D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

總計

男性市民

女性市民

總計

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過的前提下認(rèn)為支持申辦年足球世界杯與性別有關(guān)?請說明理由.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家邊防安全條例規(guī)定:當(dāng)外輪與我國海岸線的距離小于或等于海里時,就會被警告.如圖,設(shè)是海岸線上距離海里的兩個觀察站,滿足,一艘外輪在點滿足,.

(1)滿足什么關(guān)系時,就該向外輪發(fā)出警告令其退出我國海域?

(2)當(dāng)時,間處于什么范圍內(nèi)可以避免使外輪進(jìn)入被警告區(qū)域?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,,,記,.

(1)當(dāng)時,求原點關(guān)于直線的對稱點坐標(biāo);

(2)在中,求邊上中線長的最小值;

(3)求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線是一條居民平時散步的小道,小道兩旁是空地,當(dāng)?shù)卣疄榱素S富居民的業(yè)余生活,要在小道兩旁規(guī)劃出兩地來修建休閑活動場所,已知空地和規(guī)劃的兩塊用地(陰影區(qū)域)都是矩形,,,若以所在直線為軸,為原點,建立如圖平面直角坐標(biāo)系,則曲線的方程為,記,規(guī)劃的兩塊用地的面積之和為.(單位:)

(1)求關(guān)于的函數(shù);

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是各項均為正數(shù)的等差數(shù)列,其中,且成等比數(shù)列;數(shù)列的前項和為,滿足.

1)求數(shù)列、的通項公式;

2)如果,設(shè)數(shù)列的前項和為,是否存在正整數(shù),使得成立,若存在,求出的最小值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案