【題目】若直線m被兩平行線l1:x+y=0與l2:x+y+ =0所截得的線段的長(zhǎng)為2 ,則m的傾斜角可以是
①15° ②45° ③60° ④105°⑤120° ⑥165°
其中正確答案的序號(hào)是 . (寫(xiě)出所有正確答案的序號(hào))

【答案】④或⑥
【解析】解:由兩平行線間的距離為 = ,直線m被平行線截得線段的長(zhǎng)為2 ,
可得直線m和兩平行線的夾角為30°.
由于兩條平行線的傾斜角為135°,故直線m的傾斜角為105°或165°,
所以答案是:④或⑥.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線的傾斜角的相關(guān)知識(shí),掌握當(dāng)直線l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí), 規(guī)定α=0°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大。
(2)若a+c=1,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sinxcosx﹣2cos2x. (Ⅰ)求f( );
(Ⅱ)求f(x)的最大值和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= ,AB=1,M是PB的中點(diǎn).

(1)證明:面PAD⊥面PCD;
(2)求AC與PB所成的角;
(3)求面AMC與面BMC所成二面角的大小余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) (x∈R),其中t∈R,將f(x)的最小值記為g(t).
(1)求g(t)的表達(dá)式;
(2)當(dāng)﹣1≤t≤1時(shí),要使關(guān)于t的方程g(t)=kt有且僅有一個(gè)實(shí)根,求實(shí)數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩定點(diǎn)A25),B-2,1),M(在第一象限)和N是過(guò)原點(diǎn)的直線l上的兩個(gè)動(dòng)點(diǎn),且|MN|=lAB,如果直線AMBN的交點(diǎn)Cy軸上,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某貨輪勻速行駛在相距300海里的甲、乙兩地間運(yùn)輸貨物,運(yùn)輸成本由燃料費(fèi)用和其它費(fèi)用組成,已知該貨輪每小時(shí)的燃料費(fèi)用與其航行速度的平方成正比(比例系數(shù)為0.5),其它費(fèi)用為每小時(shí)800元,且該貨輪的最大航行速度為50海里/小時(shí).
(1)請(qǐng)將從甲地到乙地的運(yùn)輸成本y(元)表示為航行速度x(海里/小時(shí))的函數(shù);
(2)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= x3 (m+3)x2+(m+6)x,x∈R.(其中m為常數(shù))
(1)當(dāng)m=4時(shí),求函數(shù)的極值點(diǎn)和極值;
(2)若函數(shù)y=f(x)在區(qū)間(0,+∞)上有兩個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是焦距為的橢圓的左、右頂點(diǎn), 為橢圓上非頂點(diǎn)的點(diǎn),直線的斜率分別為,且.

(1)求橢圓的方程;

(2)直線(與軸不重合)過(guò)點(diǎn)且與橢圓交于兩點(diǎn),直線交于點(diǎn),試求點(diǎn)的軌跡是否是垂直軸的直線,若是,則求出點(diǎn)的軌跡方程,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案