精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,在Rt△ABC中,AC⊥BC,過點C的直線VC垂直于平面ABC,D、E分別為線段VA、VC上異于端點的點.
(1)當DE⊥平面VBC時,判斷直線DE與平面ABC的位置關系,并說明理由;
(2)當D、E、F分別為線段VA、VC、AB上的中點,且VC=2BC時,求二面角B﹣DE﹣F的余弦值.

【答案】
(1)解:DE∥平面ABC.

∵VC平面VBC,DE⊥平面VBC,

∴DE⊥VC,

∵VC⊥平面ABC,∴VC⊥AC,

∵DE⊥VC,VC⊥AC,∴DE∥AC,

∵DE平面ABC,AC平面ABC,

∴DE∥平面ABC;


(2)解:∵DE⊥平面VBC,∴DE⊥BE,DE⊥VB,

∵D,F分別為VA,AB的中點,

∴DF∥VB,∴DE⊥DF,

∴BE,DF所成角的大小=二面角B﹣DE﹣F的大。

∵VC=2BC,∴VE=BC,VB= BC,∴BE= BC,

∴cos∠VBE= = ,

∴二面角B﹣DE﹣F的余弦值為


【解析】(1)證明DE∥AC,即可判斷直線DE與平面ABC的位置關系;(2)BE,DF所成角的大小=二面角B﹣DE﹣F的大小,利用余弦定理,即可求解.
【考點精析】認真審題,首先需要了解空間中直線與平面之間的位置關系(直線在平面內—有無數個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD= ,AB=2,AD=1,若M、N分別是邊AD、CD上的點,且滿足 =λ,其中λ∈[0,1],則 的取值范圍是(
A.[﹣3,﹣1]
B.[﹣3,1]
C.[﹣1,1]
D.[1,3]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】三國魏人劉徽,自撰《海島算經》,專論測高望遠.其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直.從前表卻行一百二十三步,人目著地取望島峰,與表末參合.從後表卻行百二十七步,人目著地取望島峰,亦與表末參合.問島高幾何?譯文如下:要測量海島上一座山峰A的高度AH,立兩根高三丈的標桿BC和DE,前后兩桿相距BD=1000步,使后標桿桿腳D與前標桿桿腳B與山峰腳H在同一直線上,從前標桿桿腳B退行123步到F,人眼著地觀測到島峰,A、C、F三點共線,從后標桿桿腳D退行127步到G,人眼著地觀測到島峰,A、E、G三點也共線,則山峰的高度AH=( ) 步(古制:1步=6尺,1里=180丈=1800尺=300步)
A.1250
B.1255
C.1230
D.1200

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]
在直角坐標系xOy中,直線l的參數方程為 (t為參數),在以O為極點x軸的非負半軸為極軸建立的極坐標系中,曲線C的極坐標方程為ρ=2.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若點Q是曲線C上的動點,求點Q到直線l的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,側面PAD是邊長為2的等邊三角形且垂直于底, 的中點。

1)證明:直線平面

2)點在棱上,且直線與底面所成角為,求二面角的余弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,小明想將短軸長為2,長軸長為4的一個半橢圓形紙片剪成等腰梯形ABDE,且梯形ABDE內接于半橢圓,DEAB,AB為短軸,OC為長半軸

(1)求梯形ABDE上底邊DE與高OH長的關系式;

(2)若半橢圓上到H的距離最小的點恰好為C點,求底邊DE的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直三棱柱ABC﹣A1BlC1中,平面α與棱AB,AC,A1C1 , A1B1分別交于點E,F,G,H,且直線AA1∥平面α.有下列三個命題:①四邊形EFGH是平行四邊形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正確的命題有(
A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,設為不同的兩點,直線的方程為,設,其中均為實數.下列四個說法中:

①存在實數,使點在直線上;

②若,則過兩點的直線與直線重合;

③若,則直線經過線段的中點;

④若,則點在直線的同側,且直線與線段的延長線相交.

所有結論正確的說法的序號是______________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓M過C(1,-1),D(-1,1)兩點,且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設點P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.

查看答案和解析>>

同步練習冊答案