【題目】如圖,在矩形中,點(diǎn)在線段上, , ,沿直線將翻折成,使點(diǎn)在平面上的射影落在直線上.
(Ⅰ)求證:直線平面;
(Ⅱ)求二面角的平面角的余弦值.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(1)根據(jù)射影定義得,再根據(jù)線面垂直得,最后根據(jù)線面垂直判定定理得結(jié)論(2)連接交于點(diǎn).則根據(jù)二面角定義得是二面角的平面角的平面角.再通過(guò)解三角形得二面角的平面角的余弦值.
試題解析:(Ⅰ)證明:在線段上取點(diǎn),使,連接交于點(diǎn).
正方形中, , 翻折后, , ,
又 , 平面,
又 平面, 平面平面
又平面平面 ,
點(diǎn)在平面上的射影落在直線上,
又點(diǎn)在平面上的射影落在直線上,
點(diǎn)為直線與的交點(diǎn),
平面即平面, 直線平面;
(Ⅱ)由(Ⅰ)得是二面角的平面角的平面角.
,在矩形中,可求得, .
在中, ,
二面角的平面角的余弦值為.
點(diǎn)睛:立體幾何中折疊問(wèn)題,要注重折疊前后垂直關(guān)系的變化,不變的垂直關(guān)系是解決問(wèn)題的關(guān)鍵條件.線面角的尋找,主要找射影,即需從線面垂直出發(fā)確定射影,進(jìn)而確定線面角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某幾何體直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.
(1)求證: ;
(2);
(3)設(shè)為中點(diǎn),在邊上找一點(diǎn),使//平面并求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有7位歌手(1至7號(hào))參加一場(chǎng)歌唱比賽,由500名大眾評(píng)委現(xiàn)場(chǎng)投票決定歌手名次.根據(jù)年齡將大眾評(píng)委分為五組,各組的人數(shù)如下:
組別 | A | B | C | D | E |
人數(shù) | 50 | 100 | 150 | 150 | 50 |
(1)為了調(diào)查評(píng)委對(duì)7位歌手的支持情況,現(xiàn)用分層抽樣方法從各組中抽取若干評(píng)委,其中從B組抽取了6人,請(qǐng)將其余各組抽取的人數(shù)填入下表.
組別 | A | B | C | D | E |
人數(shù) | 50 | 100 | 150 | 150 | 50 |
抽取人數(shù) | 6 |
(2)在(1)中,若A,B兩組被抽到的評(píng)委中各有2人支持1號(hào)歌手,現(xiàn)從這兩組被抽到的評(píng)委中分別任選1人,求這2人都支持1號(hào)歌手的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)求證:當(dāng)時(shí),對(duì)任意都有;
(2)若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體中,,,點(diǎn)E是線段AB中點(diǎn).
證明:;
求二面角的大小的余弦值;
求A點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,且過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若的頂點(diǎn)、在橢圓上, 所在的直線斜率為, 所在的直線斜率為,若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,
直線與以橢圓C的右焦點(diǎn)為圓心,以橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓C上一點(diǎn),若過(guò)點(diǎn)的直線與橢圓C相交于不同的兩點(diǎn)S和T,
滿足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com