如圖,在組合體中,ABCD—A1B1C1D1是一個(gè)長(zhǎng)方體,P—ABCD是一個(gè)四棱錐.AB=2,BC=3,點(diǎn)P平面CC1D1D,且PC=PD=

(1)證明:PD平面PBC;
(2)求PA與平面ABCD所成的角的正切值;
(3)若,當(dāng)a為何值時(shí),PC//平面

(1)先證,再證,根據(jù)線面垂直的判定定理可證結(jié)論
(2)(3)當(dāng)時(shí),
或建立空間直角坐標(biāo)系可以用空間向量解決

解析試題分析:方法一:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/31/2/tjouf.png" style="vertical-align:middle;" />,,
所以為等腰直角三角形,所以. 
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/60/8/15ypu4.png" style="vertical-align:middle;" />是一個(gè)長(zhǎng)方體,所以,
,所以,所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fb/5/1kmwy2.png" style="vertical-align:middle;" />垂直于平面內(nèi)的兩條相交直線,
由線面垂直的判定定理,可得

(2)過(guò)點(diǎn)在平面,連接
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/6/mikdy1.png" style="vertical-align:middle;" />,所以,
所以就是與平面所成的角.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/14/1/t1qee.png" style="vertical-align:middle;" />,,所以.    
所以與平面所成的角的正切值為.          
(3)當(dāng)時(shí),.           
當(dāng)時(shí),四邊形是一個(gè)正方形,所以,
,所以,所以. 
在同一個(gè)平面內(nèi),所以. 
,所以,所以
方法二:(1)證明:如圖建立空間直角坐標(biāo)系,設(shè)棱長(zhǎng),
則有,,,.                            
于是,,
所以
所以垂直于平面內(nèi)的兩條相交直線,
由線面垂直的判定定理,可得.   

(2)解:,所以,而平面的一個(gè)法向量為
所以.所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長(zhǎng)度之比;
(3) 若D是棱CC1的中點(diǎn),問(wèn)在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分16分)如圖,在六面體中,,,.

求證:(1);(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
如圖,斜三棱柱中,側(cè)面底面ABC,側(cè)面是菱形,,EF分別是、AB的中點(diǎn).

求證:(1)EF∥平面
(2)平面CEF⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)在直三棱柱(側(cè)棱垂直底面)中,,且異面直線所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求與平面所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,底面,點(diǎn),分別在棱上,且 

(Ⅰ)求證:平面;
(Ⅱ)當(dāng)的中點(diǎn)時(shí),求與平面所成的角的正弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?若存在,請(qǐng)確定點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平行四邊形中,,,將沿折起,使

(1)求證:平面; 
(2)求平面和平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形, ,且點(diǎn)滿足 .

(1)證明:平面 .
(2)在線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置,若不存在請(qǐng)說(shuō)明理由 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分為10分)
在四面體ABCD中作截面PQR,若PQ,CB的延長(zhǎng)線交于M;RQ,DB的延長(zhǎng)線交于N;RP,DC的延長(zhǎng)線交于K,求證:M、N、K三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊(cè)答案