等比數(shù)列{an}的各項均為正數(shù),2a4,a3,4a5成等差數(shù)列,且
(1)求數(shù)列{an}的通項公式;
(2)設,求數(shù)列{bn}的前n項和Sn
【答案】分析:(1)設等比數(shù)列{an}的公比為q,然后將條件都轉化成首項和公比,解方程可求出首項和公比,從而可求出數(shù)列{an}的通項公式;
(2)先求出數(shù)列{bn}的通項公式,然后利用裂項求和可求出數(shù)列{bn}的前n項和Sn
解答:(本小題滿分14分)
(1)解:設等比數(shù)列{an}的公比為q,依題意,有…(2分)
所以…(3分)
由于a1≠0,q≠0,解之得…(5分)
又a1>0,q>0,所以,…(6分)
所以數(shù)列{an}的通項公式為(n∈N*).…(7分)
(2)解:由(1),得=.…(8分)
所以=.…(10分)
所以Sn=b1+b2+…+bn==
故數(shù)列{bn}的前n項和.…(14分)
點評:本小題主要考查等比數(shù)列的通項、裂項求和等知識,考查化歸與轉化的數(shù)學思想方法,以及抽象概括能力、運算求解能力和創(chuàng)新意識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的各均為正數(shù),且a1+2a2=3,a42=4a3a7,則數(shù)列{an}的通項公式為
an =
3
2n
an =
3
2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知等比數(shù)列{an}的各均為正數(shù),且數(shù)學公式,則數(shù)列{an}的通項公式為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知等比數(shù)列{an}的各均為正數(shù),且a1+2a2=3,a42=4a3a7,則數(shù)列{an}的通項公式為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知等比數(shù)列{an}的各均為正數(shù),且a1+2a2=3,a42=4a3a7,則數(shù)列{an}的通項公式為______.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年江蘇省常州市教育學會高三1月學業(yè)水平監(jiān)測數(shù)學試題(解析版) 題型:解答題

已知等比數(shù)列{an}的各均為正數(shù),且,則數(shù)列{an}的通項公式為   

查看答案和解析>>

同步練習冊答案