將一根長為3米的繩子拉直后在任意位置剪斷,分為兩段,那么這兩段繩子的長都不小于1米的概率是( 。
A、
1
4
B、
1
3
C、
1
2
D、
2
3
考點:幾何概型
專題:概率與統(tǒng)計
分析:根據(jù)題意確定為幾何概型中的長度類型,將長度為3m的繩子分成相等的三段,在中間一段任意位置剪斷符合要求,從而找出中間1m處的兩個界點,再求出其比值.
解答: 解:記“兩段的長都不小于1m”為事件A,
則只能在中間1m的繩子上剪斷,剪得兩段的長都不小于1m,
所以事件A發(fā)生的概率 P(A)=
1
3

故選B.
點評:本題主要考查概率中的幾何概型,它的結(jié)果要通過長度、面積或體積之比來得到.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,求:
(1)三棱錐C1-A1B1B的體積;
(2)異面直線A1B與AC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則整數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD為直角梯形,AB⊥AD,四邊形ABB1A1是平行四邊形,側(cè)面ADA1⊥底面ABCD,AA1=
2
,∠A1AD=135°,AD=2,AB=BC=1.
(1)在線段AD上找一點O,使A1O∥平面AB1C,并說明理由;
(2)求平面ACB1與平面ACB所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二項展開式(2x-
1
x
n的各項系數(shù)的絕對值之和為729,則展開式中的常數(shù)項是(  )
A、60B、45C、35D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)x∈R在區(qū)間[-
π
6
,
6
]上的圖象,為了得到這個函數(shù)的圖象,只要將y=cos(x-
π
2
),(x∈R)的圖象上所有的點(  )
A、向左平移
π
6
個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
B、向左平移
π
6
個單位長度,再把所得各點的橫坐標縮短到原來的
1
2
倍,縱坐標不變
C、向左平移
π
3
個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
D、向左平移
π
3
個單位長度,再把所得各點的橫 坐標縮短到原來的
1
2
倍,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標系xOy中,銳角△ABC內(nèi)接于單位圓,已知BC平行于x軸,且tan∠xDA=2,記∠xOA=α(0<α<
π
2
),∠xOB═β(π<β<
2
),則sin(α+β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個等比數(shù)列中,S4=15,S6=63,求S10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(2x,1,3),
b
=(1,-2y,9),且
a
b
,則6x+2y的值是
 

查看答案和解析>>

同步練習(xí)冊答案