若關(guān)于x的不等式4x-2x+1-a≥0在[1,2]上恒成立,則實(shí)數(shù)a的取值范圍為   
【答案】分析:設(shè)2x=t,用換元法把4x-2x+1化成t2-2t+1-1,轉(zhuǎn)化為求二次函數(shù)的最值,即可求出答案.
解答:解:設(shè)2x=t,∵1≤x≤2,則2≤t≤4,
原式可化為:4x-2x+1≥a,令y=4x-2x+1=t2-2t+1-1
=(t-1)2-1,當(dāng)2≤t≤4時(shí),y為增函數(shù),
故當(dāng)t=2時(shí),y取最小值0,
要使等式4x-2x+1-a≥0在[1,2]上恒成立,只需y的最小值≥a即可,
∴a≤0,
故選A≤0.
點(diǎn)評(píng):本題考查了函數(shù)恒成立問(wèn)題,難度一般,關(guān)鍵是掌握換元法的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

56、若關(guān)于x的不等式4x-2x+1-a≥0在[1,2]上恒成立,則實(shí)數(shù)a的取值范圍為
a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式4x-2x>a的解集為R,則實(shí)數(shù)a的取值范圍是________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若關(guān)于x的不等式4x-2x+1-a≥0在[1,2]上恒成立,則實(shí)數(shù)a的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市人大附中高三數(shù)學(xué)標(biāo)準(zhǔn)化試卷(03)(解析版) 題型:解答題

若關(guān)于x的不等式4x-2x+1-a≥0在[1,2]上恒成立,則實(shí)數(shù)a的取值范圍為   

查看答案和解析>>

同步練習(xí)冊(cè)答案