已知圓心為的圓,經(jīng)過點,則該圓的標準方程是
A.
B.
C.
D.
D

試題分析:圓的半徑,則該圓的標準方程是
。故選D。
點評:本題主要考查求圓的標準方程的方法,先求出半徑是解決本題的關(guān)鍵,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系內(nèi),若圓的圓心在第二象限內(nèi),則實數(shù)的取值范圍為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在直角坐標系內(nèi),點實施變換后,對應點為,給出以下命題:
①圓上任意一點實施變換后,對應點的軌跡仍是圓;
②若直線上每一點實施變換后,對應點的軌跡方程仍是;
③橢圓上每一點實施變換后,對應點的軌跡仍是離心率不變的橢圓;
④曲線上每一點實施變換后,對應點的軌跡是曲線,是曲線上的任意一點,是曲線上的任意一點,則的最小值為
以上正確命題的序號是                  (寫出全部正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以雙曲線的一個焦點為圓心,離心率為半徑的圓的方程是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過原點O作圓x2+y2-8x=0的弦OA。
(1)求弦OA中點M的軌跡方程;
(2)延長OA到N,使|OA|=|AN|,求N點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點A(1,-1)、B(-1,1)且圓心在直線x+y-2=0上的圓的方程是(  )
A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4
C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,設(shè)線段的長度為1,端點在邊長為2的正方形的四邊上滑動.當沿著正方形的四邊滑動一周時,的中點所形成的軌跡為,若圍成的面積為,則         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓M:軸相切。
(1)求的值;
(2)求圓M在軸上截得的弦長;
(3)若點是直線上的動點,過點作直線與圓M相切,
為切點。求四邊形面積的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,圓的直徑,直線與圓相切于點,,若,設(shè),則______.

查看答案和解析>>

同步練習冊答案