【題目】如圖所示,四棱錐P﹣ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點.
(1)求證:平面PDE⊥平面PAC;
(2)求直線PC與平面PDE所成的角的正弦值.
【答案】
(1)解:以點C為坐標(biāo)原點,以直線CD,CB,CP分別為x,y,z軸建立空間直角坐標(biāo)系C﹣xyz,
則C(0,0,0),A(2,1,0),B(0,3,0),P(0,0,2),D(2,0,0),E(1,2,0).
∴ , , ,
∴ , ,
∴DE⊥CA,DE⊥CP,
又CP∩CA=C,AC平面PAC,CP平面PAC,
∴DE⊥平面PAC,∵DE平面PDE,
∴平面PDE⊥平面PAC.
(2)解: ,
設(shè) 是平面PDE的一個法向量,則 ,
∴ ,
令x=2,則y=1,z=2,即 ,
∴ =4,| |=3,| |=2,
∴cos< >= = .
∴直線PC與平面PDE所成的角的正弦值為 .
【解析】(1)點C為坐標(biāo)原點建立空間直角坐標(biāo)系,求出向量 , , 的坐標(biāo),根據(jù)數(shù)量積得出DE⊥AC,DE⊥CP,故而DE⊥平面PAC,于是平面PDE⊥平面PAC;(2)求出平面PDE的法向量 ,計算 與 的夾角,則直線PC與平面PDE所成的角的正弦值等于|cos< >|.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記關(guān)于x的不等式 的解集為P,不等式|x+2|<3的解集為Q
(1)若a=3,求P;
(2)若P∪Q=Q,求正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)的農(nóng)產(chǎn)品A第x天(1≤x≤20,x∈N*)的銷售價格p=50﹣|x﹣6|(元∕百斤),一農(nóng)戶在第x天(1≤x≤20,x∈N*)農(nóng)產(chǎn)品A的銷售量q=a+|x﹣8|(百斤)(a為常數(shù)),且該農(nóng)戶在第7天銷售農(nóng)產(chǎn)品A的銷售收入為2009元.
(1)求該農(nóng)戶在第10天銷售農(nóng)產(chǎn)品A的銷售收入是多少?
(2)這20天中該農(nóng)戶在哪一天的銷售收入最大?為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={(x,y)|y=a|x|,x∈R},B={(x,y)|y=x+a,x∈R},已知集合A∩B中有且僅有一個元素,則常數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式(4kx﹣k2﹣12k﹣9)(2x﹣11)>0,其中k∈R;
(1)試求不等式的解集A;
(2)對于不等式的解集A,記B=A∩Z(其中Z為整數(shù)集),若集合B為有限集,求實數(shù)k的取值范圍,使得集合B中元素個數(shù)最少,并用列舉法表示集合B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知ABCD﹣A1B1C1D1為正方體,① ;② ;③向量 與向量 的夾角是60°;④正方體ABCD﹣A1B1C1D1的體積為 .其中正確的命題是(寫出所有正確命題編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在(﹣∞,+∞)上的偶函數(shù),且在 (﹣∞,0]上是增函數(shù),設(shè)a=f(log47),b=f( ),c=f(0.20.6),則a,b,c大小關(guān)系是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,x,y∈R,證明:(a2+b2)(x2+y2)≥(ax+by)2 , 并利用上述結(jié)論求(m2+4n2)( + )的最小值(其中m,n∈R且m≠0,n≠0).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com