(本小題滿分13分)
若函數(shù)對(duì)任意的,均有,則稱函數(shù)具有性質(zhì).
(Ⅰ)判斷下面兩個(gè)函數(shù)是否具有性質(zhì),并說明理由.
①; ②.
(Ⅱ)若函數(shù)具有性質(zhì),且(),
求證:對(duì)任意有;
(Ⅲ)在(Ⅱ)的條件下,是否對(duì)任意均有.若成立給出證明,若不成立給出反例.
(本小題滿分13分)
(Ⅰ)證明:①函數(shù)具有性質(zhì). ……………1分
,
因?yàn)?img width=36 height=19 src="http://thumb.zyjl.cn/pic1/0688/440/373440.gif" >,, ……………3分
即,
此函數(shù)為具有性質(zhì).
②函數(shù)不具有性質(zhì). ……………4分
例如,當(dāng)時(shí),,
, ……………5分
所以,,
此函數(shù)不具有性質(zhì).
(Ⅱ)假設(shè)為中第一個(gè)大于的值, ……………6分
則,
因?yàn)楹瘮?shù)具有性質(zhì),
所以,對(duì)于任意,均有,
所以,
所以,
與矛盾,
所以,對(duì)任意的有. ……………9分
(Ⅲ)不成立.
例如 ……………10分
證明:當(dāng)為有理數(shù)時(shí),均為有理數(shù),
,
當(dāng)為無理數(shù)時(shí),均為無理數(shù),
所以,函數(shù)對(duì)任意的,均有,
即函數(shù)具有性質(zhì). ……………12分
而當(dāng)()且當(dāng)為無理數(shù)時(shí),.
所以,在(Ⅱ)的條件下,“對(duì)任意均有”不成立.……………13分
(其他反例仿此給分.
如,,,等.)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com