已知:兩個(gè)函數(shù)的定義域和值域都是,其函數(shù)對(duì)應(yīng)法則如下表: 則                     

 

【答案】

       ;  

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系xOy上的定點(diǎn)M(2,0)和定直線l:x=-
3
2
,動(dòng)點(diǎn)P在直線l上的射影為Q,且4(
PQ
+
PM
)•(
PQ
-
PM
)+2
PM
OM
=1

(1)求點(diǎn)P的軌跡C的方程;
(2)設(shè)A、B是軌跡C上兩個(gè)動(dòng)點(diǎn),
MA
MB
,λ∈R,∠AOB=θ,請(qǐng)把△AOB的面積S表示為θ的函數(shù),并求此函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面直角坐標(biāo)系xOy上的定點(diǎn)M(2,0)和定直線l:x=數(shù)學(xué)公式,動(dòng)點(diǎn)P在直線l上的射影為Q,且4數(shù)學(xué)公式
(1)求點(diǎn)P的軌跡C的方程;
(2)設(shè)A、B是軌跡C上兩個(gè)動(dòng)點(diǎn),數(shù)學(xué)公式,λ∈R,∠AOB=θ,請(qǐng)把△AOB的面積S表示為θ的函數(shù),并求此函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓的方程為(a>0),其右焦點(diǎn)為F,把橢圓的長(zhǎng)軸分成6等份,過每個(gè)分點(diǎn)作x軸的垂線交橢圓上半部于點(diǎn)P1、P2、P3、P4、P5五個(gè)點(diǎn),且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=.

(1)求橢圓的方程;

(2)設(shè)直線l過F點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.

(文)某廠家擬在2006年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬件與年促銷費(fèi)用m萬元(m≥0)滿足x=3(k為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬件.已知2006年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費(fèi)用).

(1)將2006年該產(chǎn)品的利潤(rùn)y萬元表示為年促銷費(fèi)用m萬元的函數(shù);

(2)該廠家2006年的促銷費(fèi)用投入多少萬元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

已知函數(shù),曲線在點(diǎn)處的切線方程為

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)設(shè),若函數(shù)軸有兩個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅲ)證明:曲線上任意一點(diǎn)的切線與直線和直線所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年河北省唐山一中高考數(shù)學(xué)仿真試卷3(文科)(解析版) 題型:解答題

已知平面直角坐標(biāo)系xOy上的定點(diǎn)M(2,0)和定直線l:x=,動(dòng)點(diǎn)P在直線l上的射影為Q,且4
(1)求點(diǎn)P的軌跡C的方程;
(2)設(shè)A、B是軌跡C上兩個(gè)動(dòng)點(diǎn),,λ∈R,∠AOB=θ,請(qǐng)把△AOB的面積S表示為θ的函數(shù),并求此函數(shù)的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案