若函數(shù)f(x)的導(dǎo)數(shù)為-2x2+1,則f(x)可以等于( 。
A、-2x3+1
B、-
2
3
x3+x
C、x+1
D、-4x
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:只要對選項(xiàng)進(jìn)行求導(dǎo),對數(shù)為已知函數(shù)的選項(xiàng)即可.
解答: 解:對于選項(xiàng)A,求導(dǎo)得-6x2,不等于已知函數(shù)解析式;
對于選項(xiàng)B,求導(dǎo)得-2x2+1,對應(yīng)已知函數(shù);
對于選項(xiàng)C,求導(dǎo)得1;的、
對于選項(xiàng)D,求導(dǎo)得-4;
故選B.
點(diǎn)評:本題考查了基本初等函數(shù)的求導(dǎo),熟練求導(dǎo)公式是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=
1
2
n(n+1),bn是an與an+1的等差中項(xiàng).
(Ⅰ)求bn;
(Ⅱ)設(shè)cn=
1
(2n-1)bn
,數(shù)列{cn}的前n項(xiàng)和為Tn,若滿足不等式bn+λ<Tn 的正整數(shù)n有且僅有兩個(gè),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
x2-bx+1
,b為常數(shù).
(1)判斷f(x)的奇偶性;
(2)若f(x)在(1,+∞)單調(diào)遞減,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=mx2+mx+2-m.
(Ⅰ)若不等式f(x)>0對任意x∈R恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若x=0是不等式f(x)<x唯一的整數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按要求求下列函數(shù)的值域:
(1)y=3
x
-1(觀察法);
(2)y=
-2x2+3x+2
(配方法);
(3)y=2-x+
3x-1
(換元法);
(4)y=
-2x+1
x-1
(分離常數(shù)法).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次方程mx2+(2m-1)x-m+2=0的兩個(gè)根都小于1,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+
π
6
)(ω>0)的圖象與y軸交與P,與x軸的相鄰兩個(gè)交點(diǎn)記為A,B,若△PAB的面積等于π,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m≠n,x=m4-m3n,y=n3m-n4,則x與y的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x2-3x+2在點(diǎn)(1,0)處的切線方程為
 

查看答案和解析>>

同步練習(xí)冊答案