設(shè)一個(gè)正三棱錐的側(cè)面與底面所成的角為α,相鄰兩個(gè)側(cè)面所成的角為β,那么兩個(gè)角α和β的三角函數(shù)間的關(guān)系是( )
A.2cos2α+3cosβ=1
B.2cosα+3cos2β=1
C.3cos2α+2cosβ=1
D.3cosα+2cos2β=1
【答案】分析:由題設(shè)條件及四個(gè)選項(xiàng)可以得出需要先做出兩個(gè)二面角,再由題設(shè)中的等量關(guān)系建立方程研究?jī)蓚(gè)二面角的關(guān)系,由圖形及題設(shè)條件知在如圖圖形中作SD⊥BC,連接AD,作SH⊥AD,則SH⊥底面ABC,可得BE⊥SA,連接CE,則CE⊥SA,∠BEC是二側(cè)面成角的平面角,觀察三角形BEC,可將此三角形的邊用要研究的角α,β表示出來(lái),在此三角形中利用余弦定理得到方程,整理出選項(xiàng).
解答:解:設(shè)正三棱錐S-ABC,側(cè)面與底面所成的角為α,相鄰兩個(gè)側(cè)面所成的角為β,作SD⊥BC,連接AD,作SH⊥AD,則SH⊥底面ABC,可得BE⊥SA,連接CE,則CE⊥SA,∠BEC是二側(cè)面成角的平面角,
設(shè)AB=BC=AC=1個(gè)單位,
AD=,HD==,AH=
=cosα,SD=,SH=,
SA===
又BE×SA×=SD×AB×=S△SAB,
∴BE===
在三角形EBC中根據(jù)余弦定理,
BC2=BE2+EC2-2×BE×EC×cosβ,
1=+-2××cosβ,
經(jīng)整理得:3cos2α+2cosβ=1,
故選C
點(diǎn)評(píng):本題考查二面角的平面角及求法,由于本題是要研究?jī)蓚(gè)二面角有關(guān)的方程問(wèn)題,從題設(shè)條件中找到等量關(guān)系是解題的關(guān)鍵,本題中用余弦定理建立起等式,整理出答案,本題中熟練掌握二面角平面角的作法也很關(guān)鍵,本題考查了推理論證能力及空間想像感知能力,且與余弦定理想結(jié)合,綜合性較強(qiáng),有一定的思維深度,運(yùn)算量較大易因?yàn)橛?jì)算出錯(cuò)或因?yàn)檎也坏降攘筷P(guān)系而賣到解題無(wú)法下手.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)一個(gè)正三棱錐的側(cè)面與底面所成的角為α,相鄰兩個(gè)側(cè)面所成的角為β,那么兩個(gè)角α和β的三角函數(shù)間的關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案