精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

(I)求函數f(x)的最小正周期和對稱中心的坐標

(II)設,求函數g(x)在上的最大值,并確定此時x的值

【答案】(I) , . (II) 見解析.

【解析】試題分析:()由二倍角公式和化一公式化簡可得;

()由()知的解析式,把代入求,進而求出g(x),結合x的范圍,求出最大值即可.

試題解析:(I)

∴函數f(x)的最小正周期,

,得,

∴函數f(x)的對稱中心的坐標為.

(II)由(I)可得f(x)=2sin[ (x)+]=2sin(x),

g(x)=[f(x)]2=4×=2-2cos(3x),

x∈[-],∴-≤3x

當3x=π,即x時,g(x)max=4.

點睛:三角函數式的化簡要遵循“三看”原則:(1)一看“角”,這是最重要的一環(huán),通過看角之間的區(qū)別和聯系,把角進行合理的拆分,從而正確使用公式;(2)而看“函數名稱”看函數名稱之間的差異,從而確定使用公式,常見的有“切化弦”;(3)三看“結構特征”,分析結構特征,可以幫助我們找到變形的方向,如“遇到分式通分”等.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列的前n項和為,,且,數列滿足,,其前9項和為63.

(1)求數列的通項公式;

(2)令,數列的前n項和為,若對任意正整數n,都有,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩名運動員的5次測試成績如下圖所示:

5 7

1

6 8

8 8 2

2

3 6 7

設s1 , s2分別表示甲、乙兩名運動員測試成績的標準差, 分別表示甲、乙兩名運動員測試成績的平均數,則有(
A. ,s1<s2
B. ,s1>s2
C. ,s1>s2
D. ,s1=s2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,長方體ABCDABC′D′中,AB=2 AD=2 ,AA′=2,

(Ⅰ)求異面直線BC′ 和AD所成的角;

(Ⅱ)求證:直線BC′∥平面ADDA′.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱柱ABCD﹣A1B1C1D1的底面是邊長為2的菱形,且∠BAD= ,AA1⊥平面ABCD,AA1=1,設E為CD中點

(1)求證:D1E⊥平面BEC1
(2)點F在線段A1B1上,且AF∥平面BEC1 , 求平面ADF和平面BEC1所成銳角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖所示,在空間直角坐標系的坐標平面內,若函數的圖象與軸圍成一個封閉區(qū)域,將區(qū)域沿軸的正方向上移4個單位,得到幾何體如圖一.現有一個與之等高的圓柱如圖二,其底面積與區(qū)域面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數是定義在上的奇函數,且為偶函數,當時,,若有三個零點,則實數的取值集合是( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,P是直線x=4上一動點,以P為圓心的圓Γ經定點B(1,0),直線l是圓Γ在點B處的切線,過A(﹣1,0)作圓Γ的兩條切線分別與l交于E,F兩點.

(1)求證:|EA|+|EB|為定值;

(2)設直線l交直線x=4于點Q,證明:|EB||FQ|=|BF|EQ|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一裝有水的直三棱柱容器(厚度忽略不計),上下底面均為邊長為5的正三角形,側棱為10,側面水平放置,如圖所示,點 , , 分別在棱, , , 上,水面恰好過點 , , ,且

(1)證明: ;

(2)若底面水平放置時,求水面的高.

查看答案和解析>>

同步練習冊答案