設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和.已知,且構(gòu)成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式.
(2)令求數(shù)列的前項(xiàng)和

(1);(2)

解析試題分析:由已知得 
解得
設(shè)數(shù)列的公比為,由,可得
,可知,即,
解得
由題意得
故數(shù)列的通項(xiàng)為
(2)由于
由(1)得

是等差數(shù)列.



考點(diǎn):本題主要考查等比數(shù)列的通項(xiàng)公式,等差數(shù)列的通項(xiàng)公式、前n項(xiàng)求和公式。
點(diǎn)評(píng):基礎(chǔ)題,各項(xiàng)為正的等比數(shù)列,取對(duì)數(shù)后得到等差數(shù)列,這一結(jié)論可指導(dǎo)我們找到解題思路。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知單調(diào)遞增的等比數(shù)列{an}滿(mǎn)足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列中,已知,且公比為正整數(shù).
(1) 求數(shù)列的通項(xiàng)公式;(5分)
(2) 求數(shù)列的前項(xiàng)和.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是公差不為零的等差數(shù)列, 成等比數(shù)列.
求數(shù)列的通項(xiàng);       求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)
已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程的兩根,且
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和
(3)設(shè)函數(shù)對(duì)任意的都成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題10分) 等比數(shù)列{}的前n 項(xiàng)和為,已知,,成等差數(shù)列
(1)求{}的公比q;
(2)求=3,求;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=5,S15="225."
(1)求數(shù)列{a­n}的通項(xiàng)an;     
(2)設(shè)bn=+2n,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

經(jīng)過(guò)作直線交曲線為參數(shù))于、兩點(diǎn),若成等比數(shù)列,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)函數(shù)f(x)=xm+ax的導(dǎo)函數(shù)f′(x)=2x+1,則數(shù)列(n∈N*)的前n項(xiàng)和是(  )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案