某地區(qū)試行高考考試改革:在高三學(xué)年中舉行4次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不再參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加4次測(cè)試.假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
23
,每次測(cè)試時(shí)間間隔恰當(dāng),每次測(cè)試通過(guò)與否互相獨(dú)立.
(Ⅰ)求該學(xué)生在前兩次測(cè)試中至少有一次通過(guò)的概率;
(Ⅱ)如果考上大學(xué)或參加完4次測(cè)試,那么測(cè)試就結(jié)束.記該生參加測(cè)試的次數(shù)為X,求X的分布列及X的數(shù)學(xué)期望.
分析:(Ⅰ)由題意知該學(xué)生在前兩次測(cè)試中至少有一次通過(guò)的對(duì)立事件是一次也沒(méi)有通過(guò),根據(jù)對(duì)立事件的概率和相互獨(dú)立事件同時(shí)發(fā)生的概率得到結(jié)果.
(II)該生參加測(cè)試次數(shù)X的可能取值為2,3,4,結(jié)合變量對(duì)應(yīng)的事件利用獨(dú)立重復(fù)試驗(yàn)概率公式寫出變量的概率,寫出分布列和數(shù)學(xué)期望.
解答:解:(Ⅰ)由題意知該學(xué)生在前兩次測(cè)試中至少有一次通過(guò)的對(duì)立事件是一次也沒(méi)有通過(guò),
記“該生在前兩次測(cè)試中至少有一次通過(guò)”的事件為事件A,
根據(jù)對(duì)立事件的概率和相互獨(dú)立事件同時(shí)發(fā)生的概率得到
P(A)=1-(1-
2
3
)2=
8
9

即該生在前兩次測(cè)試中至少有一次通過(guò)的概率為
8
9

(Ⅱ)該生參加測(cè)試次數(shù)X的可能取值為2,3,4,
P(X=2)=(
2
3
)2=
4
9

P(X=3)=
C
1
2
.
2
3
.
1
3
.
2
3
=
8
27
,
P(X=4)=
C
1
3
2
3
.(
1
3
)2+(
1
3
)3=
7
27
,
∴X的分布列為:
精英家教網(wǎng)
E(X)=2×
4
9
+3×
8
27
+4×
7
27
=
76
27
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,考查獨(dú)立重復(fù)試驗(yàn)概率公式,考查相互獨(dú)立事件同時(shí)發(fā)生的概率,考查利用概率知識(shí)解決實(shí)際問(wèn)題的能力,是一個(gè)必得分題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試.假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
13
,每次測(cè)試通過(guò)與否相互獨(dú)立.規(guī)定:若前4次都沒(méi)有通過(guò)測(cè)試,則第5次不能參加測(cè)試.
(1)求該學(xué)生考上大學(xué)的概率;
(2)如果考上大學(xué)或參加完5次考試就結(jié)束,求該生至少參加四次考試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中的2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加后面的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試,假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
13
,每次測(cè)試通過(guò)與否相互獨(dú)立.規(guī)定:若前4次都沒(méi)有通過(guò)測(cè)試,則第5次不能參加測(cè)試.
(1)求該學(xué)生恰好經(jīng)過(guò)4次測(cè)試考上大學(xué)的概率;
(2)求該學(xué)生考上大學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試.假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
13
,每次測(cè)試時(shí)間間隔恰當(dāng),每次測(cè)試通過(guò)與否互相獨(dú)立.
(1)求該學(xué)生考上大學(xué)的概率.
(2)如果考上大學(xué)或參加完5次測(cè)試就結(jié)束,記該生參加測(cè)試的次數(shù)為X,求X的分布列及X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試.假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
13
,每次測(cè)試通過(guò)與否互相獨(dú)立.規(guī)定:若前4次都沒(méi)有通過(guò)測(cè)試,則第5次不能參加測(cè)試.
(I)求該學(xué)生考上大學(xué)的概率;
(II)如果考上大學(xué)或參加完5次測(cè)試就結(jié)束,求該生參加測(cè)試的次數(shù)為4的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案