(2012•汕頭一模)(幾何證明選講選做題)已知PA是⊙O的切線,切點為A,直線PO交⊙O于B、C兩點,AC=2,∠PAB=120°,則⊙O的面積為
分析:由已知中,已知PA是圓O的切線,切點為A,直線PO交圓O于B,C兩點,AC=2,∠PAB=120°,我們根據(jù)切線的性質(zhì),等腰三角形兩底角相等,直徑所對圓周角為直角,30°所對的直角邊等于斜邊的一半,求出圓的半徑,代入圓面積公式,即可得到答案.
解答:解:∵PA是圓O的切線,
∴OA⊥AP
又∵∠PAB=120°
∴∠BAO=∠ABO=30°
又∵在Rt△ABC中,AC=2
∴BC=4,即圓O的直徑2R=4
∴圓O的面積S=πR2=4π
故答案為:4π.
點評:本題考查的知識點是切線的性質(zhì),圓周角定理,其中根據(jù)已知條件,求出圓的半徑是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•汕頭一模)(坐標系與參數(shù)方程選做題)過點(2,
π
3
)
且平行于極軸的直線的極坐標方程為
ρsinθ=
3
ρsinθ=
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•汕頭一模)某商店經(jīng)銷一種洗衣粉,年銷售總量為6000包,每包進價為2.8元,銷售價為3.4元,全年分若干次進貨,每次進貨均為x包,已知每次進貨的運輸勞務費為62.5元,全年保管費為1.5x元.
(Ⅰ)將該商店經(jīng)銷洗衣粉一年的利潤y(元)元表示為每次進貨量x(包)的函數(shù);
(Ⅱ)為使利潤最大,每次應進貨多少包?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•汕頭一模)如圖,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,E為DB的中點.
(Ⅰ)證明:AE⊥BC;
(Ⅱ)若點F是線段BC上的動點,設平面PFE與平面PBE所成的平面角大小為θ,當θ在[0,
π4
]內(nèi)取值時,直線PF與平面DBC所成的角為α,求tanα的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•汕頭一模)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求證:AF⊥平面CBF;
(2)設FC的中點為M,求證:OM∥平面DAF;
(3)求三棱錐F-CBE的體積.

查看答案和解析>>

同步練習冊答案