【題目】二戰(zhàn)中盟軍為了知道德國“虎式”重型坦克的數(shù)量,采用了兩種方法,一種是傳統(tǒng)的情報竊取,一種是用統(tǒng)計學(xué)的方法進行估計,統(tǒng)計學(xué)的方法最后被證實比傳統(tǒng)的情報收集更精確,德國人在生產(chǎn)坦克時把坦克從1開始進行了連續(xù)編號,在戰(zhàn)爭期間盟軍把繳獲的“虎式”坦克的編號進行記錄,并計算出這些編號的平均值為675.5,假設(shè)繳獲的坦克代表了所有坦克的一個隨機樣本,則利用你所學(xué)過的統(tǒng)計知識估計德國共制造“虎式”坦克大約有( )
A.1050輛
B.1350輛
C.1650輛
D.1950輛
科目:高中數(shù)學(xué) 來源: 題型:
【題目】比較下列各組數(shù)的大。
(1)log0.7 1.3和log0.71.8;
(2)log35和log64;
(3)(lgn)1.7和(lgn)2 (n>1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x-.
(1)判斷函數(shù)的奇偶性,并證明;
(2)用單調(diào)性的定義證明函數(shù)f(x)=2x-在(0,+∞)上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象與軸交于點,周期是.
(1)求函數(shù)解析式,并寫出函數(shù)圖象的對稱軸方程和對稱中心;
(2)已知點,點是該函數(shù)圖象上一點,點是的中點,當(dāng) , 時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的頂點與焦點分別是橢圓的焦點與頂點,若雙曲線的兩條漸近線與橢圓的交點構(gòu)成的四邊形恰為正方形,則橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣blnx在點(1,f(1))處的切線為y=1.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)是否存在實數(shù)m,當(dāng)x∈(0,1]時,函數(shù)g(x)=f(x)﹣x2+m(x﹣1)的最小值為0,若存在,求出m的取值范圍;若不存在,說明理由;
(Ⅲ)若0<x1<x2 , 求證: <2x2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)表示三條不同的直線,表示三個不同的平面,給出下列四個命題:
①若,則;
②若,則;
③若為異面直線,,,則;
④若,則. 其中真命題的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在用120分鐘做150分的數(shù)學(xué)試卷(分為卷Ⅰ和卷Ⅱ兩部分)時,卷Ⅰ和卷Ⅱ所得分?jǐn)?shù)分別為P(單位:分)和Q(單位:分),在每部分做了20分鐘的條件下發(fā)現(xiàn)它們與投入時間m(單位:分鐘)的關(guān)系有經(jīng)驗公式,.
(1)試建立數(shù)學(xué)總成績y(單位:分)與對卷Ⅱ投入時間x(單位:分鐘)的函數(shù)關(guān)系式,并指明函數(shù)定義域;
(2)如何計劃使用時間,才能使得所得分?jǐn)?shù)最高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線交此拋物線于不同的兩個點、.
()當(dāng)直線過點時,證明,為定值.
()當(dāng)時,直線是否過定點?若過定點,求出定點坐標(biāo);反之,請說明理由.
()記,如果直線過點,設(shè)線段的中點為,線段的中點為.問是否存在一條直線和一個定點,使得點到它們的距離相等?若存在,求出這條直線和這個定點;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com