已知拋物線C:,為拋物線上一點(diǎn),關(guān)于軸對稱的點(diǎn),為坐標(biāo)原點(diǎn).(1)若,求點(diǎn)的坐標(biāo);
(2)若過滿足(1)中的點(diǎn)作直線交拋物線兩點(diǎn), 且斜率分別為,且,求證:直線過定點(diǎn),并求出該定點(diǎn)坐標(biāo).

(1)
(2)直線過定點(diǎn)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線的一個(gè)焦點(diǎn),并與雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為.
(1)求拋物線的標(biāo)準(zhǔn)方程;    (2)求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知拋物線, 過點(diǎn)引一弦,使它恰在點(diǎn)被平分,求這條弦所在的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線在y軸上的截距為m(m≠0),交橢圓于A、B兩個(gè)不同點(diǎn)。
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且.

(Ⅰ)求橢圓的離心率;
(Ⅱ)D是過三點(diǎn)的圓上的點(diǎn),D到直線的最大距離等于橢圓長軸的長,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn)使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知圓過橢圓的兩焦點(diǎn),與橢圓有且僅有兩個(gè)公共點(diǎn);直線與圓相切 ,與橢圓相交于兩點(diǎn)記
(1)求橢圓的方程;
(2)求的取值范圍;
(3)求的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(I) 已知拋物線過焦點(diǎn)的動(dòng)直線l交拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn), 求證: 為定值;
(Ⅱ)由 (Ⅰ) 可知: 過拋物線的焦點(diǎn)的動(dòng)直線 l 交拋物線于兩點(diǎn), 存在定點(diǎn), 使得為定值. 請寫出關(guān)于橢圓的類似結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓的左右焦點(diǎn)分別為、,短軸兩個(gè)端點(diǎn)為、,且四邊形是邊長為2的正方形。
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn);證明:為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)雙曲線C:-y2=1的左、右頂點(diǎn)分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點(diǎn)P、Q.
(1)若直線m與x軸正半軸的交點(diǎn)為T,且·=1,求點(diǎn)T的坐標(biāo);
(2)求直線A1P與直線A2Q的交點(diǎn)M的軌跡E的方程;
(3)過點(diǎn)F(1,0)作直線l與(2)中的軌跡E交于不同的兩點(diǎn)A、B,設(shè)=λ·,若λ∈[-2,-1],求||(T為(1)中的點(diǎn))的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案