已知半徑為1的動圓與圓(x-5)2+(y+7)2=16相切,則動圓圓心的軌跡方程是(    )
A.(x-5)2+(y+7)2="25"B.(x-5)2+(y+7)2=17或(x-5)2+(y+7)2=15
C.(x-5)2+(y+7)2="9"D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9
D
有內(nèi)切、外切兩種情況.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系,已知圓心在第二象限、半徑為的圓C與直線y=x相切于
坐標原點O.橢圓與圓C的一個交點到橢圓兩焦點的距離之和為
(1)求圓C的方程;
(2)圓C上是否存在異于原點的點Q,使F為橢圓右焦點),若存在,請
求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

圓心在直線5x-3y-8=0上的圓與兩坐標軸相切,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

A={(x,y)|y=,a>0},B={(x,y)|(x–1)2+(y)2=a2,a>0},且AB,求a的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

兩圓x2+y2=4和(x-3)2+(y-4)2=9的位置關系是( 。
A.相離B.相交C.外切D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點A(-
2
,0),B(
2
,0)
,P是平面內(nèi)的一個動點,直線PA與PB交于點P,且它們的斜率之積是-
1
2

(Ⅰ)求動點P的軌跡C的方程,并求出曲線C的離心率的值;
(Ⅱ)設直線l:y=kx+1與曲線C交于M、N兩點,當線段MN的中點在直線x+2y=0上時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

兩圓x2+y2+6x+4y=0及x2+y2+4x+2y-4=0的公共弦所在直線方程為_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于任意實數(shù),直線與圓的位置關系是_________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

兩圓恰有三條公切線,若,且,則的最小值為      (    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案