【題目】已知函數(shù),.
(Ⅰ)若曲線與曲線在公共點(diǎn)處有共同的切線,求實(shí)數(shù)的值;
(Ⅱ)在(Ⅰ)的條件下,試問函數(shù)是否有零點(diǎn)?如果有,求出該零點(diǎn);若沒有,請說明理由.
【答案】(I);(II)無零點(diǎn).
【解析】試題分析:(Ⅰ)設(shè)曲線與曲線公共點(diǎn)為則由,,即可求的值;
(Ⅱ)函數(shù)是否有零點(diǎn),轉(zhuǎn)化為函數(shù)與函數(shù)在區(qū)間是否有交點(diǎn),求導(dǎo)根據(jù)函數(shù)單調(diào)性可知最小值為,最大值為,從而無零點(diǎn)
試題解析:
(Ⅰ)函數(shù)的定義域?yàn)?/span>,,
設(shè)曲線與曲線公共點(diǎn)為
由于在公共點(diǎn)處有共同的切線,所以,解得,.
由可得.
聯(lián)立解得.
(Ⅱ)函數(shù)是否有零點(diǎn),
轉(zhuǎn)化為函數(shù)與函數(shù)在區(qū)間是否有交點(diǎn),
,可得,
令,解得,此時(shí)函數(shù)單調(diào)遞增;
令,解得,此時(shí)函數(shù)單調(diào)遞減.
∴當(dāng)時(shí),函數(shù)取得極小值即最小值,.
可得,
令,解得,此時(shí)函數(shù)單調(diào)遞增;
令,解得,此時(shí)函數(shù)單調(diào)遞減.
∴當(dāng)時(shí),函數(shù)取得極大值即最大值,.
因此兩個(gè)函數(shù)無交點(diǎn).即函數(shù)無零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面,為直角梯形,,,,,過點(diǎn)作平面平行于平面,平面與棱,,,分別相交于點(diǎn),,,.
(1)求的長度;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(其中).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓內(nèi)一個(gè)定點(diǎn),是圓上任意一點(diǎn).線段的垂直平分線和半徑相交于點(diǎn).
(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡是什么曲線?并求出其軌跡方程;
(Ⅱ)過點(diǎn)作直線與曲線交于、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的普通方程和曲線的極坐標(biāo)方程;
(2)若射線與曲線,分別交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)五邊形中,
,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.
(1)求證:平面平面;
(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=x+b與函數(shù)f(x)=ln x的圖象交于兩個(gè)不同的點(diǎn)A,B,其橫坐標(biāo)分別為x1,x2,且x1<x2.
(1)求b的取值范圍;
(2)當(dāng)x2≥2時(shí),證明x1·<2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com