分析 (1)由ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,展開ρsinθ-$\sqrt{3}$ρcosθ=2$\sqrt{3}$,利用互化公式即可得出直線l的直角坐標(biāo)方程.曲線C:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$,且參數(shù)α∈[0,2π],利用三角函數(shù)基本關(guān)系式的平方關(guān)系消去參數(shù)α可知曲線C的普通方程.
(2)由(1)點P的軌跡方程為(x-2)2+y2=4,圓心為C(2,0),半徑為2.利用點到直線的距離公式可得圓心C到直線l的距離d,可得點P到直線l距離的最大值為d+r.
解答 解:(1)∵ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,∴ρsinθ-$\sqrt{3}$ρcosθ=2$\sqrt{3}$,
∴直線l的直角坐標(biāo)方程為:y-$\sqrt{3}$x=2$\sqrt{3}$.
曲線C:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$,且參數(shù)α∈[0,2π],
消去參數(shù)α可知曲線C的普通方程為:(x-2)2+y2=4.
(2)由(1)點P的軌跡方程為(x-2)2+y2=4,圓心為C(2,0),半徑為2.
圓心C到直線l的距離d=$\frac{|2\sqrt{3}-0+2\sqrt{3}|}{\sqrt{(\sqrt{3})^{2}+1}}$=2$\sqrt{3}$,
∴點P到直線l距離的最大值為$2\sqrt{3}$+2.
點評 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com