7.{an}為等差數(shù)列,公差d>0,Sn是數(shù)列{an}前n項和,已知a1a4=27,S4=24.
(1)求數(shù)列{an}的通項公式an;
(2)令bn=an•2n,求數(shù)列{bn}的前n項和Tn

分析 (1)由a1a4=27,S4=24.利用等差數(shù)列的通項公式及其前n項和公式即可得出.
(2)bn=an•2n=(2n+1)•2n.利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.

解答 解:(1)∵a1a4=27,S4=24.
∴$\left\{\begin{array}{l}{{a}_{1}({a}_{1}+3d)=27}\\{4{a}_{1}+\frac{4×3}{2}d=24}\end{array}\right.$,解得a1=3,d=2.
∴an=3+2(n-1)=2n+1.
(2)bn=an•2n=(2n+1)•2n
∴數(shù)列{bn}的前n項和Tn=3×2+5×22+…+(2n+1)•2n
2Tn=3×22+5×23+…+(2n-1)•2n+(2n+1)•2n+1,
∴-Tn=6+2×(22+23+…+2n)-(2n+1)•2n+1=2+2×$\frac{2({2}^{n}-1)}{2-1}$-(2n+1)•2n+1=-2+(1-2n)•2n+1
∴Tn=(2n-1)•2n+1+2.

點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,直角三角形ACB的斜邊AB=2$\sqrt{3}$,∠ABC=$\frac{π}{6}$,點P是以點C為圓心1為半徑的圓上的動點.
(Ⅰ)當點P在三角形ABC外,且CP⊥AB時,求sin∠PBC;
(Ⅱ)求$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知直線l1:x+my-1=0,l2:2mx+y+$\sqrt{2}$=0.l1⊥l2,則實數(shù)m=0;若l1∥l2,則實數(shù)m=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.(1)已知不等式ax2-3x+2<0的解集為A={x|1<x<b},求函數(shù)f(x)=(2a+b)x+$\frac{25}{(b-a)x+a}$(x∈A)的最小值.
(2)設$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(a,-1),$\overrightarrow{OC}$=(-b,0),a>0,b>0,O為坐標原點,設A,B,C三點共線,求$\frac{1}{a}$+$\frac{2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.將直線y=7x繞著原點逆時針旋轉$\frac{π}{4}$后所得的直線過點A(cosθ,sinθ)
(1)求sinθ,cosθ以及tanθ的值;
(2)若點A位于第二象限,記函數(shù)f(x)=$\frac{5\sqrt{3}}{2}$sinθcosx+$\frac{10}{3}$cosθsinx,試用五點作圖法繪制函數(shù)f(x)在[$\frac{π}{3}$,$\frac{7π}{3}$]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知S=12-22+32-42+…+(n-1)2-n2,請設計程序框圖,算法要求從鍵盤輸入n,輸出S.并寫出計算機程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知在直角坐標系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2t}\\{y=1+4t}\end{array}\right.$(t為參數(shù)),以原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2$\sqrt{2}$sinθ,則直線l與圓C的位置關系為相交.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=sin(2x+$\frac{π}{3}$)•cos(x-$\frac{π}{6}$)+cos(2x+$\frac{π}{3}$)•sin($\frac{π}{6}$-x)的圖象的一條對稱軸方程是( 。
A.x=$\frac{π}{4}$B.x=$\frac{π}{2}$C.x=πD.x=$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知直線l1:18x+6y-17=0和l2:5x+10y-9=0,求直線l1和l2的夾角.

查看答案和解析>>

同步練習冊答案