分析 (Ⅰ)由正弦定理及兩角和的正弦函數(shù)公式化簡已知等式可得2sinAcosB=$\sqrt{3}$sinA,可求cosB,結(jié)合B范圍即可得解;
(Ⅱ)由已知利用三角形面積公式可求a=$\frac{8}$,利用余弦定理b2=a2+c2-2accosB,整理可得:b4-12b2+32=0,進而可得b,a的值.
解答 (本題滿分為10分)
解:(Ⅰ)由2acosB=$\sqrt{3}$(bcosC+ccosB)及正弦定理可得:2sinAcosB=$\sqrt{3}$(sinBcosC+sinCcosB)=$\sqrt{3}$sin(B+C)=$\sqrt{3}$sinA,
由于sinA≠0,兩邊同時除以sinA,可得2cosB=$\sqrt{3}$,
所以,cosB=$\frac{\sqrt{3}}{2}$,
由于B∈(0,π),可得:B=$\frac{π}{6}$.…5分
(Ⅱ)∵B=$\frac{π}{6}$,c=$\sqrt{3}$b,△ABC的面積為2$\sqrt{3}$=$\frac{1}{2}$acsinB=$\frac{1}{4}$ac,可得:ac=8$\sqrt{3}$,可得:a=$\frac{8}$,
∴由余弦定理b2=a2+c2-2accosB,可得:b2=$\frac{64}{^{2}}$+3b2-2×$\frac{8}$×$\sqrt{3}b$×$\frac{\sqrt{3}}{2}$,整理可得:b4-12b2+32=0,
∴解得:$\left\{\begin{array}{l}{b=2\sqrt{2}}\\{a=2\sqrt{2}}\end{array}\right.$,或$\left\{\begin{array}{l}{b=2}\\{a=4}\end{array}\right.$.…10分
點評 本題主要考查了正弦定理,余弦定理,兩角和的正弦函數(shù)公式,三角形面積公式的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基本知識的考查.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [${\frac{π}{6}$,$\frac{5π}{6}}$] | B. | [${\frac{π}{3}$,$\frac{2π}{3}}$] | C. | [0,$\frac{π}{6}}$]∪[${\frac{5π}{6}$,π] | D. | [0,$\frac{π}{3}}$]∪[${\frac{2π}{3}$,π] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com