已知點(diǎn)是直線上一動(dòng)點(diǎn),是圓C:的兩條切線,A、B是切點(diǎn),若四邊形的最小面積是2,則的值為?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C的圓心在坐標(biāo)原點(diǎn),且與直線相切
(1)求直線被圓C所截得的弦AB的長(zhǎng).
(2)過(guò)點(diǎn)G(1,3)作兩條與圓C相切的直線,切點(diǎn)分別為M,N求直線MN的方程
(3)若與直線l1垂直的直線l與圓C交于不同的兩點(diǎn)P,Q,若∠POQ為鈍角,求直線l縱截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓心為的圓經(jīng)過(guò)點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若直線過(guò)點(diǎn)且被圓截得的線段長(zhǎng)為,求直線的方程;
(3)是否存在斜率是1的直線,使得以被圓所截得的弦EF為直徑的圓經(jīng)過(guò)
原點(diǎn)?若存在,試求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C經(jīng)過(guò)P(4,-2),Q(-1,3)兩點(diǎn),且在y軸上截得的線段長(zhǎng)為4,半徑小于5.
(1)求直線PQ與圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點(diǎn)A,B,且以線段AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓G:+y2=1.過(guò)軸上的動(dòng)點(diǎn)(m,0)作圓x2+y2=1的切線l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G上的點(diǎn)到直線的最大距離;
(2)①當(dāng)實(shí)數(shù)時(shí),求A,B兩點(diǎn)坐標(biāo);
②將|AB|表示為m的函數(shù),并求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓心為C的圓經(jīng)過(guò)點(diǎn)和,且圓心C在直線:上,求圓心為C的圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是橢圓上兩點(diǎn),點(diǎn)M的坐標(biāo)為.
(1)當(dāng)兩點(diǎn)關(guān)于軸對(duì)稱,且為等邊三角形時(shí),求的長(zhǎng);
(2)當(dāng)兩點(diǎn)不關(guān)于軸對(duì)稱時(shí),證明:不可能為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
圓內(nèi)有一點(diǎn),為過(guò)點(diǎn)且傾斜角為的弦.
(1)當(dāng)時(shí),求;
(2)當(dāng)弦被點(diǎn)平分時(shí),求出直線的方程;
(3)設(shè)過(guò)點(diǎn)的弦的中點(diǎn)為,求點(diǎn)的坐標(biāo)所滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
若直線3x+4y+m=0與圓(θ為參數(shù))沒(méi)有公共點(diǎn),
則實(shí)數(shù)m的取值范圍是_____________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com