【題目】如圖,已知圓的半徑為,,是圓上的一個(gè)動(dòng)點(diǎn),的中垂線交于點(diǎn),以直線為軸,的中垂線為軸建立平面直角坐標(biāo)系。
(Ⅰ)若點(diǎn)的軌跡為曲線,求曲線的方程;
(Ⅱ)設(shè)點(diǎn)為圓上任意一點(diǎn),過作圓的切線與曲線交于兩點(diǎn),證明:以為直徑的圓經(jīng)過定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。
【答案】(Ⅰ);(Ⅱ)見解析.
【解析】
(Ⅰ)根據(jù)中垂線性質(zhì)得出:,從而知點(diǎn)軌跡是橢圓,由橢圓標(biāo)準(zhǔn)方程可得.
(Ⅱ)當(dāng)切線斜率不存在時(shí),可得兩圓,它們的交點(diǎn)為原點(diǎn),接著證明其它的圓都過原點(diǎn)即可,即證,也即證,為此可設(shè)直線方程為,由直線與圓相切得關(guān)系式,設(shè),由直線方程與橢圓方程聯(lián)立化簡可得,計(jì)算可得結(jié)論.
(Ⅰ)因?yàn)?/span>是線段中垂線上的點(diǎn),所以
所以:
所以:點(diǎn)的軌跡是以為焦點(diǎn)的橢圓
于是:,于是
所以:曲線的方程是
(Ⅱ)當(dāng)直線斜率不存在時(shí),
取,則,此時(shí)圓的方程是
取,則,此時(shí)圓的方程是
兩圓相交于原點(diǎn),下面證明原點(diǎn)滿足題目條件,即證:
當(dāng)直線斜率不存在時(shí),設(shè)直線方程為
因?yàn)橹本與圓相切,所以圓心到直線的距離,即①
由可得:
設(shè),則
于是:
所以:
將①代入可得:
綜上所述:以為直徑的圓經(jīng)過定點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)在區(qū)間(1,2)上單調(diào)遞增,求a的取值范圍;
(Ⅲ)討論函數(shù)g(x)=f'(x)﹣x的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC.O為AB的中點(diǎn),OF⊥EC. (Ⅰ)求證:OE⊥FC:
(Ⅱ)若 = 時(shí),求二面角F﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)的最小值為.
(1)求;
(2)是否存在實(shí)數(shù)同時(shí)滿足下列條件:
①;
②當(dāng)的定義域?yàn)?/span>時(shí), 值域?yàn)?/span>?若存在, 求出的值;若不存在, 說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù),當(dāng).
(Ⅰ)求出函數(shù)在上的解析式;
(Ⅱ)在答題卷上畫出函數(shù)的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間;
(Ⅲ)若關(guān)于的方程有三個(gè)不同的解,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登山健身的活動(dòng),有N人參加,現(xiàn)將所有參加者按年齡情況分為[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七組,其頻率分布直方圖如下所示.已知[35,40)這組的參加者是8人.
(1)求N和[30,35)這組的參加者人數(shù)N1;
(2)已知[30,35)和[35,40)這兩組各有2名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取2人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中都至少有1名數(shù)學(xué)老師的概率;
(3)組織者從[45,55)這組的參加者(其中共有4名女教師,其余全為男教師)中隨機(jī)選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為x,求x的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)分別是橢圓的左右頂點(diǎn), 為其右焦點(diǎn), 與的等比中項(xiàng)是,橢圓的離心率為.
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)的直線與該軌跡交于兩點(diǎn),若直線的斜率依次成等比數(shù)列,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P是拋物線x2=4y上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影是Q,點(diǎn)A(8,7),則|PA|+|PQ|的最小值為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC三邊長構(gòu)成公差為d(d≠0)的等差數(shù)列,則△ABC最大內(nèi)角α的取值范圍為( )
A. <α≤
B. <α<π
C. ≤α<π
D. <α≤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com