分析 (1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f(1),f′(1)的值,求出a的值即可;
(2)求出函數(shù)f(x)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)性,得到?唯一的x0∈(b,a+1),使得h(x0)=${e}^{{x}_{0}}$-$\frac{a}{{x}_{0}}$=0,即a=x0${e}^{{x}_{0}}$,從而求出a的范圍,證明結(jié)論即可.
解答 解:(1)f(x)的定義域是(0,+∞),
f′(x)=ex+x•ex-a(1+$\frac{1}{x}$),
故f(1)=e-a,f′(1)=2e-2a,
由題意得:e-a=0,且2e-2a=0,解得:a=e
(2)f′(x)=(x+1)(ex-$\frac{a}{x}$),
令h(x)=ex-$\frac{a}{x}$,x∈(0,+∞),
①a≤0時(shí),h(x)=ex-$\frac{a}{x}$>0,此時(shí)f′(x)>0,f(x)遞增,
此時(shí)函數(shù)f(x)無(wú)最小值,不合題意;
②a>0時(shí),h′(x)>0,h(x)在(0,+∞)遞增,
取實(shí)數(shù)b,滿足0<b<min{$\frac{a}{2}$,$\frac{1}{2}$},
則eb<${e}^{\frac{1}{2}}$=$\sqrt{e}$,-$\frac{a}$<-2,
故h(b)=eb-$\frac{a}$<$\sqrt{e}$-2<0,
又∵h(yuǎn)(a+1)=ea+1-$\frac{a}{a+1}$>1-$\frac{a}{a+1}$=$\frac{1}{a+1}$>0,
∴?唯一的x0∈(b,a+1),使得h(x0)=${e}^{{x}_{0}}$-$\frac{a}{{x}_{0}}$=0,即a=x0${e}^{{x}_{0}}$,
x∈(0,x0)時(shí),h(x)<h(x0)=0,此時(shí)f′(x)<0,f(x)遞減,
x∈(x0,+∞)時(shí),h(x)>h(x0)=0,此時(shí)f′(x)>0,f(x)遞增,
故x=x0時(shí),f(x)取最小值,
由a=x0${e}^{{x}_{0}}$兩邊取對(duì)數(shù),得lna=lnx0+x0,即lnx0+x0=lna,
于是f(x)min=f(x0)=x0${•e}^{{x}_{0}}$-a(x0+lnx0)=a-alna,
由題意,a-alna>0,又a>0,∴1-lna>0,即a<e,
綜上:0<a<e.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,考查轉(zhuǎn)化思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 48 | B. | 36 | C. | 24 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 48π | B. | 36π | C. | 24π | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$e-1 | B. | e | C. | e2 | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A與B互斥 | B. | 任何兩個(gè)均互斥 | C. | B與C互斥 | D. | 任何兩個(gè)均對(duì)立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{8}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com