為了調(diào)查甲網(wǎng)站受歡迎的程度,隨機(jī)選取了13天,統(tǒng)計(jì)上午8:00-10:00間的點(diǎn)擊量,得如圖所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖計(jì)算極差和中位數(shù)分別是
 
 
考點(diǎn):莖葉圖
專題:概率與統(tǒng)計(jì)
分析:根據(jù)莖葉圖中的數(shù)據(jù),利用極差與中位數(shù)的概念,求出結(jié)果即可.
解答: 解:根據(jù)莖葉圖中的數(shù)據(jù),得;
數(shù)據(jù)中最小值是8,最大值是31,
∴極差為31-8=23;
這組數(shù)據(jù)按大小順序排列,第7個(gè)數(shù)是13,即中位數(shù)是13.
故答案為:23,13.
點(diǎn)評(píng):本題考查了莖葉圖的應(yīng)用問題,也考查了極差與中位數(shù)的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有一塊以O(shè)為圓心的半圓形空地,要在這塊空地上劃出一個(gè)內(nèi)接矩形ABCD開辟為綠地,使其一邊AD落在半圓的直徑上,另外兩點(diǎn)B,C落在半圓的圓周上,已知半圓的半徑長(zhǎng)為a,則當(dāng)矩形ABCD的面積最大時(shí),AD的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c為其三邊,若(a+c)(a-c)=b(b+c),則∠A=( 。
A、60°或120°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,x,-3),
b
=(2,4,y),且
a
b
,那么x+y等于( 。
A、-4B、-2C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三條直線2x-y-3=0,4x-3y-5=0和ax+y-3a+1=0相交于同一點(diǎn)P.
(1)求點(diǎn)P的坐標(biāo)和a的值;
(2)求過點(diǎn)(-2,3)且與點(diǎn)P的距離為2
5
的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差為d的等差數(shù)列{an}滿足d>0,且a2是a1、a4的等比中項(xiàng),記bn=a2n(n∈R),對(duì)任意n都有
1
b1
+
1
b2
+…+
1
bn
<2,則公差d的取值范圍是( 。
A、[
1
2
,+∞)
B、(
1
2
,+∞
C、[
1
4
,
1
2
D、[
1
4
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log535-2log5
7
3
+log57-log51.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
是平面向量,若
a
⊥(
a
-2
b
),
b
⊥(
b
-2
a
),則
a
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AD=2,AB=4,E、F分別為邊AB、AD的中點(diǎn),現(xiàn)將△ADE沿DE折起,得四棱錐A-BCDE.

(Ⅰ)求證:EF∥平面ABC;
(Ⅱ)若平面ADE⊥平面BCDE,求二面角A-CD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案