【題目】在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(0,1)且互相垂直的兩條直線分別與圓O:交于點(diǎn)A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點(diǎn)C,D.

(1)若AB=,求CD的長(zhǎng);

(2)若CD中點(diǎn)為E,求△ABE面積的取值范圍.

【答案】1;(2.

【解析】

1)先由AB的長(zhǎng)度求出圓心O到直線AB的距離,列方程求出直線AB的斜率,從而得到直線CD的斜率,寫(xiě)出直線CD的方程,用垂徑定理求CD得長(zhǎng)度;(2ABE的面積,先考慮直線AB、CD平行于坐標(biāo)軸的情況,不平行時(shí)先由垂徑定理求出AB,再在PME 中用勾股定理求出PE,將面積S表示成直線AB斜率k的函數(shù)式,再求其范圍.

解:(1)因?yàn)?/span>AB,圓O半徑為2

所以點(diǎn)O到直線AB的距離為

顯然AB、CD都不平行于坐標(biāo)軸

可設(shè)AB,即

則點(diǎn)O到直線AB的距離,解得

因?yàn)?/span>ABCD,所以

所以CD,即

點(diǎn)M2,1)到直線CD的距離

所以

2)當(dāng)ABx軸,CDx軸時(shí),此時(shí)AB=4,點(diǎn)E與點(diǎn)M重合,PM=2,所以ABE的面積S=4

當(dāng)ABx軸,CDx軸時(shí),顯然不存在,舍

當(dāng)ABCD都不平行于坐標(biāo)軸時(shí)

由(1)知

因?yàn)?/span>,所以

因?yàn)辄c(diǎn)ECD中點(diǎn),所以MECD,

所以

所以ABE的面積

,則

綜上所述:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們國(guó)家正處于老齡化社會(huì)中,老有所依也是政府的民生工程.某市有戶籍的人口共萬(wàn),其中老人(年齡歲及以上)人數(shù)約有萬(wàn),為了了解老人們的健康狀況,政府從老人中隨機(jī)抽取人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評(píng)估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個(gè)等級(jí),并以歲為界限分成兩個(gè)群體進(jìn)行統(tǒng)計(jì),樣本分布被制作成如下圖表:

(1)若從樣本中的不能自理的老人中采取分層抽樣的方法再抽取人進(jìn)一步了解他們的生活狀況,則兩個(gè)群體中各應(yīng)抽取多少人?

(2)估算該市歲以上長(zhǎng)者占全市戶籍人口的百分比;

(3)政府計(jì)劃為歲及以上長(zhǎng)者或生活不能自理的老人每人購(gòu)買(mǎi)元/年的醫(yī)療保險(xiǎn),為其余老人每人購(gòu)買(mǎi)元/年的醫(yī)療保險(xiǎn),不可重復(fù)享受,試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的方程為,過(guò)點(diǎn)且斜率為的直線與曲線相切于點(diǎn)

(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程和點(diǎn)的極坐標(biāo);

(2)若點(diǎn)在曲線上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】名學(xué)生排成一排,求分別滿足下列條件的排法種數(shù),要求列式并給出計(jì)算結(jié)果.

(1)甲不在兩端;

(2)甲、乙相鄰;

(3)甲、乙、丙三人兩兩不得相鄰;

(4)甲不在排頭,乙不在排尾。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)集合,,對(duì)于任意,定義,對(duì)任意,定義,記為集合的元素個(gè)數(shù),求的值;

2)在等差數(shù)列和等比數(shù)列中,,,是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中,若存在,求出所有的,若不存在,說(shuō)明理由;

3)已知當(dāng)時(shí),有,根據(jù)此信息,若對(duì)任意,都有,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解人們對(duì)延遲退休年齡政策的態(tài)度,某部門(mén)從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,將這100人的年齡數(shù)據(jù)分成5組:,整理得到如圖所示的頻率分布直方圖.

1)由頻率分布直方圖,計(jì)算出各年齡段的人數(shù),并估計(jì)這100人年齡的眾數(shù)、中位數(shù)和平均數(shù);(該小題不用寫(xiě)解題過(guò)程,請(qǐng)?jiān)诖痤}卷上直接寫(xiě)出答案

2)支持延遲退休的人數(shù)如下表所示,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的2×2列聯(lián)表,據(jù)此表,能否有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)延遲退休年齡政的不支持態(tài)度存在差異?

附:,其中

年齡

支持延遲退休的人數(shù)

15

5

15

28

17

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的離心率為,設(shè),分別為橢圓的右頂點(diǎn),下頂點(diǎn),的面積為1.

(1)求橢圓的方程;

(2)已知不經(jīng)過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn),線段的中點(diǎn)為,若,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線與曲線相切也與曲線相切,則稱直線為曲線和曲線的公切線,已知函數(shù),其中,若曲線和曲線的公切線有兩條,則的取值范圍為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案