e1,e2是表示平面內(nèi)所有向量的一組基底,則下列四組向量中,不能作為一組基底的是(    )

A.e1+e2和e1-e2        B.3e1-2e2和4e2-6e1

C.e1+2e2和e2+2e1      D.e2和e1+e2

答案:B

解析:∵4e2-6e1=-2(3e1-2e2),∴3e1-2e2與4e2-6e1共線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

e1
e2
是表示平面內(nèi)所有向量的一組基底,則下面的四個向量中,不能作為一組基底的是
 

(1)
e1
+
e2
e1
-
e2
;(2)3
e1
-2
e2
和4
e2
-6
e1

(3)
e1
+2
e2
e2
+2
e1
;(4)
e2
e2
+
e1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

e1
e2
是表示平面內(nèi)所有向量的一組基底,則下面的四組向量中不能作為一組基底的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

e1
e2
是表示平面內(nèi)所有向量的一組基底,則下面的四個向量中,不能作為一組基底的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知e1、e2是表示平面內(nèi)所有向量的一組基底,則下列四組向量中,不能作為一組基底的是(    )

A.e1+e2e1-e2

B.3e1-2e2和4e2-6e1

C.e1+2e2e2+2 e1

D.e2e1+e2

查看答案和解析>>

同步練習(xí)冊答案