已知函數(shù)y=f(x)的定義域?yàn)?0,+∞),且f(x)=2f()+x,求f(x)的表達(dá)式.
思路分析:本題應(yīng)注意到等式f(x)=2f()+x,一方面此等式反映出f(x)與f()之間的等量關(guān)系,這種等量關(guān)系可看作是關(guān)于f(x)與f()的方程;另一方面此等式是對(duì)(0,+∞)內(nèi)的一切實(shí)數(shù)x均成立,故將此等式中的x換成后,相應(yīng)的等式也應(yīng)該成立,從而可通過(guò)列方程組求解. 解:∵x>0時(shí),有f(x)=2f()+x, 、 而x>0時(shí),>0,∴f()=2f(x)+. 、 ①②聯(lián)立解得f(x)=-為所求. |
方程及方程思想是初等數(shù)學(xué)中的兩個(gè)重點(diǎn)內(nèi)容,利用解方程或方程思想去解決數(shù)學(xué)問(wèn)題是我們常用的綠色通道.本題要注意等式f(x)=2f()+x是個(gè)恒等式,一方面要明確它反映出f(x)與f()之間的等量關(guān)系即方程,另一方面要注意f(x)與f()中的x與是互為倒數(shù)的關(guān)系. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)y=f(x)的圖象與曲線C關(guān)于y軸對(duì)稱,把曲線C向左平移1個(gè)單位后,得到函數(shù)的圖象,且f(3)=1,則實(shí)數(shù)a= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)y=f(x)與函數(shù)y=+是相等的函數(shù),則函數(shù)y=f(x)的定義域是 ( )
A.[-3,1] B.(-3,1)
C.(-3,+∞) D.(-∞,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年人教A版高中數(shù)學(xué)必修四1.6三角函數(shù)模型的簡(jiǎn)單應(yīng)用練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)y=f(x)的圖象如圖所示,則函數(shù)y=fsinx在[0,π]上的大致圖象是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省肇慶市高三復(fù)習(xí)必修一數(shù)學(xué)(B) 題型:解答題
(本題滿分12分)已知函數(shù)y=f(x)是R上的偶函數(shù),且x≥0時(shí),f(x)=()x-1.
(1)求f(x)的解析式;
(2)畫(huà)出此函數(shù)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省高三下學(xué)期第一次月考數(shù)學(xué)文卷 題型:填空題
.已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x>0時(shí),f(x)=x+,且當(dāng)x∈[-3,- 1]時(shí),n≤f(x)≤m恒成立,則m-n的最小值是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com